京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		相信大家在学习python肯定都听说过python之禅。python之禅到底是个什么东西,设计者为什么要这样设计?又有什么意义呢?看完下面的文章你就会明白了。
文章转载自:微信公众号 Python的乐趣
作者:一粒米饭
在Python的解释器中隐藏一个彩蛋,输入import this就会返回19条Python之禅,具体如下:
>>>import this The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those!
它的作者是 Tim Peter,这些设计理念开始是在Python邮件列表中发表,它包含了影响Python编程语言设计的19条软件编写原则。在最初及后来的一些版本中,一共包含20条,其中第20条是“这一条留空(...)请 Guido 来填写”。这留空的一条从未公布也可能并不存在。
其中从吉多·范罗苏姆的博客中可以了解到,最开始Python是他个人的一个实验项目(skunkworks)。为了加快Python发展,他采用了一些原则,其中包括省时规则(timesaving rules):
还有除了省时规则以外的其他规则:
1. Python实现不应局限于特定平台。可以运行某些功能并非总是可用的,但是核心部分应该在任何地方都可以使用。
2. 不要用机器可以处理的细节来打扰用户。
3. 支持和鼓励独立于平台的用户代码,但不要中断对平台功能或属性的访问(这与Java形成鲜明对比)。
4. 大型复杂系统应具有多个扩展级别。这为经验丰富的用户(无论是否熟练)提供了最大的发挥空间。
5. 错误不应致命。也就是说,只要虚拟机仍在运行,用户代码就应该能够从错误情况中恢复。
6. 同时,错误不应静默地传递(后两项决定了在整个实现中使用异常)。
7. 不应允许用户的Python代码错误导致Python解释器的不确定行为;核心错误绝不应该是由用户的错误引起的。
基于以上的哲学理念,Tim Peter整理了19条Python之禅并收录到Python增强建议(PEP 20)之中。
下面,再来简单说下这19条Python之禅的含义。
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关 ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28