
文章转载自:微信公众号 Python的乐趣
作者:一粒米饭
比如像电商行业,每月有上百万条订单发货数据需要与仓库的数据进行核对计算,涉及到数据计算,筛选,匹配等步骤,用excel表超级卡,并且经常卡死。
这时如果你会Python,十几行代码就可以搞定。
这里需要两个Python库,一个是os库,一个是pandas库。
os是Python内置库,不需要额外安装,只要用import导入就可以用了。os模块封装了常见的文件和目录操作,利用它可以轻松的对系统上的目录和文件进行各种操作,比如获取当前目录、列举当前文件夹中的所有文件和文件夹、判断文件或目录是否存在、删除文件等,具体见下图。
pandas是第三方库,需要手动安装才能使用。pandas是专门用来做数据分析的强大类库,可以方便地从csv、Excel和其他文本文件以及数据库中读取数据,然后对数据进行加和、求平均值、求方差、计算最大值最小值等数据分析,支持生成Excel等格式文件或进行可视化操作,函数如下:
其中读Excel需要依赖xlrd库,写Excel依赖openpyxl,pandas、xlrd和openpyxl安装命令如下:
$ pip install xlrd openpyxl pandas
下面开始进行数据处理...
这里假设数据是按日期命名的Excel文件并且放在excel_data文件夹中,每个Excel文件包含用户ID、商品ID、商品属性列表、购买数量这几列信息。
文件夹中的所有文件如下,在linux下用ls命令列举excel_data下所有文件:
$ ls excel_data
结果:
20120702.xlsx 20131018.xlsx 20150203.xlsx 20170416.xlsx 20120703.xlsx 20131019.xlsx 20150204.xlsx 20170417.xlsx 20120704.xlsx 20131020.xlsx 20150205.xlsx 20170418.xlsx 20120705.xlsx 20131021.xlsx 20160101.xlsx 20170419.xlsx ...
实现的思路是利用os库获取所有的Excel文件,然后用pandas依次读取所有文件并合并到一起进行数据,计算出每个商品的总量以及销量前十的商品。
1.列举所有Excel文件
import os files = os.listdir("excel_data")
2.用pandas读取所有数据并合并到一起
import pandas as pd df_list = [pd.read_excel(os.path.join("excel_data", f)) for f in files] data = pd.concat(df_list)
3.统计每个商品的数量
sum_of_product = data[["商品ID", "购买数量"]].groupby(["商品ID"]).sum() sum_of_product
结果
购买数量 商品ID 1662 1 201826 17 203319 67 203320 494 203322 332 ... ... 122680025 21 122680026 8 122690023 16 122692024 48 122696024 5
获取销量前十的商品
sum_of_product.sort_values('购买数量', ascending=False).head(10)
结果:
商品ID 购买数量 50018831 56632 50007016 8291 50011993 6351 50013636 6340 50003700 6325 211122 5823 50010558 5248 50016006 4948 50006602 4692 50002524 4123
完整代码如下:
import os import pandas as pd # 获取所有Excel文件并读取数据 files = os.listdir("excel_data") df_list = [pd.read_excel(os.path.join("excel_data", f)) for f in files] data = pd.concat(df_list) # 统计每个商品的数量,并输出到Excel文件中 sum_of_product = data[["商品ID", "购买数量"]].groupby(["商品ID"]).sum() sum_of_product.to_excel("各个商品数量统计.xlsx") # 统计销量前十的商品 sum_of_product.sort_values('购买数量', ascending=False).head(10)
结果:
商品ID 购买数量 50018831 56632 50007016 8291 50011993 6351 50013636 6340 50003700 6325 211122 5823 50010558 5248 50016006 4948 50006602 4692 50002524 4123
教程就到这里,不足之处欢迎交流指正
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04