京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		数据可视化能够很好地展示我们数据分析的结果,对于平常工作中,一份酷炫的可视化图表也能成为我们在工作汇报时的加分项,可是很多小伙伴对于怎样制作吸引人眼球可视化图表却不知晓,今天小编终于为大家找到了集中好看的力导向图,桑基图、树图、弦图的制作方法,特来分享给大家。
以下文章来源于: AI入门学习公众号
作者:伍正祥
给大家分享4种很厉害的图,基于R语言networkD3包实现,学会了可以大大提高可视化水平,R语言实现非常简单,几行代码就搞定,先看图。
1、力导向图(force Network)
2、桑基图(Sankey diagrams)
3、辐射状网络图(Radial networks)
4、弦图(chord Diagram)
下面一步步实现其中的每个图
#工作空间设置
setwd("C:/Users/wuzhengxiang/Desktop/networkD3")
#包加载
library(networkD3)
#http://christophergandrud.github.io/networkD3/#simple
1、力导向图(force Network)
1)简单网络图
#创建数据
src = c("A", "A", "A", "A", "B", "B", "C", "C", "D",'I')
target = c("B", "C", "D", "J", "E", "F", "G", "H", "I",'A')
networkData = data.frame(src, target)
#直接一个函数即可画出简单图,下面第一个图
simpleNetwork(networkData)
#换个颜色和字体大小,下面第二个图
simpleNetwork(networkData,nodeColour = "#FF69B4",fontSize = 12)
2)复杂网络图
#载入数据
data(MisLinks)
data(MisNodes)
#创建一个简单的力图
forceNetwork(Links = MisLinks, Nodes = MisNodes, Source = "source", Target = "target", Value = "value", NodeID = "name",Group = "group", opacity = 1, zoom = F, bounded = T)
# 当鼠标点击变大大的图
MyClickScript = 'd3.select(this).select("circle").transition().duration(750).attr("r", 30)'
forceNetwork(Links = MisLinks, Nodes = MisNodes, Source = "source",Target = "target", Value = "value", NodeID = "name",Group = "group", opacity = 1, zoom = F, bounded = T,
clickAction = MyClickScript)
# 节点大小赋值
forceNetwork(Links = MisLinks, Nodes = MisNodes, Source = "source",Target = "target", Value = "value", NodeID = "name", Nodesize = 'size', radiusCalculation = "d.nodesize",
Group = "group", opacity = 1, legend = T, bounded = F)
2、桑基图(Sankey diagrams)
URL <- 'https://raw.githubusercontent.com/christophergandrud/d3Network/sankey/JSONdata/energy.json'
Energy <- jsonlite::fromJSON(URL)
# Plot
sankeyNetwork(Links = Energy$links, Nodes = Energy$nodes, Source = "source",Target = "target", Value = "value", NodeID = "name",fontSize = 12, nodeWidth = 30 )
#动态
#静态
3、树状图 (Tree networks)
1)radialNetwork
Flare <- jsonlite::fromJSON(
"https://gist.githubusercontent.com/mbostock/4063550/raw/a05a94858375bd0ae023f6950a2b13fac5127637/flare.json",simplifyDataFrame = FALSE)
hc <- hclust(dist(USArrests), "ave")
radialNetwork(List = Flare, fontSize = 10, opacity = 0.9, margin=0)
radialNetwork(as.radialNetwork(hc))
2)其他类型的树图(不会翻译,弯的树图?)
diagonalNetwork(List = Flare, fontSize = 10, opacity = 0.9, margin=0)
diagonalNetwork(as.radialNetwork(hc), height = 700, margin = 50)
3)dendroNetwork(不会翻译,直的树图?)
hc <- hclust(dist(USArrests), "ave")
dendroNetwork(hc, height = 600)
dendroNetwork(hc, treeOrientation = "vertical")
dendroNetwork(hc, height = 600, linkType = "diagonal")
dendroNetwork(hc, treeOrientation = "vertical", linkType = "diagonal")
dendroNetwork(hc, textColour = c("red", "green", "orange")[cutree(hc, 3)],height = 600)
dendroNetwork(hc, textColour = c("red", "green", "orange")[cutree(hc, 3)], treeOrientation = "vertical")
4、弦图(chordDiagram)
hairColourData = matrix(c(11975, 1951, 8010, 1013,5871, 10048, 16145, 990,8916, 2060, 8090, 940, 2868, 6171, 8045, 6907), nrow = 4)
chordNetwork(hairColourData, width = 500, height = 500,colourScale = c("#000000", "#FFDD89", "#957244", "#F26223"))
#保存为html文件saveNetwork
library(magrittr)
simpleNetwork(networkData) %>% saveNetwork(file = 'Net1.html')
forceNetwork(Links = MisLinks, Nodes = MisNodes, Source = "source",Target = "target", Value = "value", NodeID = "name",Nodesize = 'size', radiusCalculation = " Math.sqrt(d.nodesize)+6",Group = "group", opacity = 1, legend = T, bounded = T) %>%
saveNetwork(file = 'forceNetwork_01.html')
	
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关 ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28