京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA持证人简介:
邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。
学习入口:https://edu.cda.cn/goods/show/3871?targetId=6821&preview=0
数字经济时代,数据已成为企业的核心资产。2024年1月1日起,财政部《企业数据资源相关会计处理暂行规定》正式施行,标志着数据资产“入表”进入实操阶段。这一政策不仅改变了企业的财务报表,更开启了数据要素市场化流通的新篇章。从理解“数据资产入表背景”,“数据资产入表流程及路径”,“数据资产入表成功案例”,我们距离用数据驱动决策又近了一步。
这一规定的出台,旨在加强企业数据资源管理,规范会计处理,强化信息披露,从而更好地发挥数据要素的价值 。紧随其后,2024年1月,国务院国资委发布相关通知,进一步细化了数据资产评估方法,特别是针对知识产权、科技成果、数据资产等的交易流转定价。

这些政策的出台并非偶然,其背后有着深刻的考量:
响应国家战略: 这是贯彻“数据二十条”中“探索数据资产入表新模式”的具体举措,旨在服务数字经济的健康发展 。
满足实务需求: 随着企业数据应用的深化,亟需明确的会计准则来指导实践,准确反映数据相关业务的经济实质 。
完善治理体系: 规范的信息披露有助于监管部门完善数字经济治理,也为投资者等报表使用者提供了决策依据 。

数据资产入表不仅仅是会计处理方式的改变,更是企业价值发现和数字化转型的重要里程碑。
优化财务报表: 将过去费用化的数据相关支出资本化,可以显著改善企业的资产负债结构,降低资产负债率,并在一定条件下调节当期利润 。以卓创资讯为例,其2024年上半年将1786.97万元数据资源计入无形资产,直接带来了营业成本的下降和净利润的增加 。
开拓价值空间:
新的盈利模式: 数据资产的交易流通能直接带来新的收入来源。
披露增信: 报表中体现的数据资产实力有助于提升银行授信 。
融资与投资: 数据资产可用于质押贷款或作为出资入股 。
促进数字化转型: 入表需求将反向激励企业加强数据治理,提升数据质量和应用水平,加速自身的数字化进程 。

根据国家标准 (GB/T 42015-2021),数据资源要成为数据资产,需满足“合法拥有或控制”、“能进行计量”并“能带来经济和社会价值”的条件 。数据资产具有可增值、可共享、可控制、可量化的基本特征 。

《暂行规定》明确,企业需根据数据资源的持有目的(如自用、出售)、形成方式(如外购、自研)和业务模式,判断其应适用无形资产准则还是存货准则 。
作为无形资产: 若企业将数据资源用于自身生产经营活动(自用),且符合无形资产确认条件的,应确认为无形资产。在研发过程中,满足资本化条件的开发阶段支出,计入“开发支出”科目 。
作为存货: 若企业持有数据资源的目的是为了对外出售,且满足存货确认条件的,应确认为存货 。
在财务报表列示上,《暂行规定》要求在资产负债表的“存货”、“无形资产”、“开发支出”项目下,增设“其中:数据资源”这样的二级明细项目 。对于经过评估且结果对财务报表有重要影响的数据资源,还需要详细披露评估的相关信息 。

数据资产入表并非一蹴而就,它是一个循序渐进的过程,大致可分为财务流程和实施流程:
财务流程: 包括数据资源识别(合规审查、权属确认、预期经济利益分析)、确认资产类别(无形资产或存货)、成本归集与分摊(初始计量、后续计量)以及最终的列报与披露 。

实施流程(价值实现进程):
生产信息化: 企业通过信息化改造,产生和收集原始数据 。
数据资源化: 对原始数据进行治理、合规审查和归集,形成数据资源 。
数据资产化: 通过数据产品研发、市场经营,结合数据确权、计量和入表,将数据资源转化为数据资产 。这个阶段可分为初次入表(底层资产形成)、二次入表(数据产品形成并开始增值) 。
数据资本化: 在数据资产的基础上,通过评估实现金融化运作,如数据信贷、出资入股、证券化等,实现资产变现(三次入表) 。

还得提一下,数据资产入表的前提是要把数据变成资产,这就需要数据分析师的努力,懂业务,根据业务做好数据管理和运营。
数据资产入表已从理论走向实践,一些前瞻性的探索正在展开:

数据要素 x 医疗健康: 山西省吕梁市数据局利用其获得运营授权的医疗数据,进行数据治理和应用场景设计后,成功实现了数据资产入表,登记价值超2000万元 。
该项目通过“三医”数据要素赋能保险风控,提升了社会及商业医保的抗风险能力,并因其创新性和社会价值入选“数字中国”建设典型案例 。

数据要素 x 城市治理: 河南某市某区针对授权的公共数据,虽然面临权属复杂、产品设计难等挑战,但通过提供软硬件一体化的解决方案和数据资产管理系统,积极推进公共数据资产入表工作,迈出了关键一步 。
学习入口:https://edu.cda.cn/goods/show/3871?targetId=6821&preview=0
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09