
在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行业的应用,邀请到了经验丰富的电商运营专家刘航老师分享。
学习入口:https://edu.cda.cn/goods/show/3832?targetId=6739&preview=0
刘航毕业于金融工程专业,起初从事证券销售工作,但发现自己更钟情于数据分析领域。学完CDA数据分析师就业班、考过CDA一级后,进入电商公司,从数据分析专员起步,历经数据分析师、店铺运营等岗位,目前担任推广分析师,负责多平台店铺推广工作。
在电商行业,数据分析贯穿于销售分析、绩效分析、转化率分析、用户画像分析等多个环节,可以说是布局了所有的行业。
以库存管理为例,通过监控商品每日实际销量和周期性数据预测,结合库存情况决定是否增加库存或进行限购。
在物流配送方面,可利用大数据优化配送路线,在保证速度的同时降低物流成本,就像滴滴打车通过后台数据优化线路一样。
然而,电商数据分析也面临诸多挑战。数据组数据隔日更新,导致数据时效性差,影响问题的及时分析和处理;商品花费和重要指标数据不清晰,难以深入了解业务情况;店铺推广端口和计划繁多,数据整理和表格制作耗费大量时间。
于是就需要数据分析知识配合着完成推广数据监测与调控。
在电商平台搜索商品时,带有广告标识的位置就是推广位。投放广告的目的是通过付费让产品获得更多曝光,吸引客户购买,提升店铺销售额,简单来说就是花钱买流量,让产品在搜索结果中更靠前。
直通车优化包含关键词、人群、地域、分时折扣和创意五个关键要素。
通过整合店铺同期销售数据、每日销售数据、不同渠道推广数据等,利用函数匹配和数据透视表,实现对店铺数据的实时监控。
例如,通过分析商品的花费占比和投产情况,判断推广策略是否合理。如果一本书的花费占比过高、投产过低,就需要检查投放关键词是否精准、创意图是否存在虚假宣传等问题;若花费占比低但产品卖得好,则可考虑加大花费以获取更多成交。
在思维层面,要明确数据分析的目的,即 “为什么做、做了有什么用”。同时,掌握统计学基础理论知识,如正态分布、均值、加权平均等,理解函数底层逻辑,避免死记硬背。
在店铺运营中,RFM 模型应用广泛。通过分析顾客最近购买时间、消费金额和购买频次,对顾客进行分类,开展针对性的会员活动,提升客单价,从而增加店铺销售额。
除 Excel 外,电商分析还会用到其他工具。八爪鱼和 Python 可用于数据爬取,其中八爪鱼操作相对简单,适合初学者;
Python 功能强大,但对使用者要求较高。PowerBI 可用于汇报展示,它有现成模板,能制作多维度动态图表,方便进行深度数据挖掘。
本次分享活动,刘航老师结合自身经历,从 CDA 学习考证到电商数据分析实战,全方位地为大家呈现了数据分析在电商行业的应用。希望大家能将所学知识运用到实际工作中,提升数据分析能力,在电商领域取得更好的成绩。如果大家想听刘老师完整版分享视频
学习入口:https://edu.cda.cn/goods/show/3832?targetId=6739&preview=0
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10