
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师
今天我将为大家带来一个关于用户私域用户质量数据分析的案例分享,主要围绕三部分来进行阐述。
学习入口:https://edu.cda.cn/goods/show/3853?targetId=6765&preview=0
我们以一家专注于私域运营的企业为案例,这家企业的运营模式主要通过社群拉新实现用户增长,主要采用线上拉新的模式获取用户。
线上拉新模式主要是由商务拓展(BD)团队寻找商家合作,由商家邀请用户加入社群。
之后,企业还推出了一种地推拉新模式,即线下拉新。线下拉新由地推人员邀请用户进群,用户进群后同样可以领取优惠券并下单。
因此,需要对线上拉新和线下拉新两种模式下的用户各项指标进行对比分析,以评估其交易转化情况。
我们先来分析下关注用户的物理特征,包括末次访问城市、90天内下单情况以及末单物理城市等。
本次线下拉新试点选择在长沙进行。数据显示,末次访问城市中,仅有70%的用户位于长沙,其余30%的用户来自其他城市。
在90天内有下单行为的用户占比65%,还有35%的用户没有下单行为。
从城市来看,62%的订单收货地址在长沙,3%的订单收货地址来自其他城市。
我们从三个交易指标进行分析:90天内人均交易频次、客单价和平台补贴率。
从数据可以看出,活跃用户的交易频次更高,而线下新客和线上新客的交易频次相对较低。
综合来看,与长沙社群活跃用户以及整体新客交易数据对比,本次线下拉新成功的用户具有以下特征:交易频次更低、实付客单更高、平台补贴率更低。
对比线下进群(地推模式)和线上拉新(全国范围的线上模式)这两种模式下的用户数、纯新用户占比、退群情况、领券和核销情况。
用户数:
纯新用户占比:
退群情况:
领券和核销情况:
综合来看,与线上进群用户对比,线下进群用户具有以下特征:
通过以上分析,我们可以看到,线下拉新模式虽然在用户数和退群率上表现较好,但在领券率和核销订单量上表现较差。
同期群分析是一种量化行为指标的方法,通过分析不同群体在特定时间段内的行为变化,来衡量指定对象组的持续性行为差异。
在社群运营中,活跃率是一个极为重要的指标,而同期群分析能够帮助我们深入了解用户在社群中的每日活跃情况。
地推模式下的用户质量并未达到预期,其退群率、领券率和核销率等关键指标均低于线上拉新模式。
具体来看:
这表明,尽管地推模式在用户数量上可能有优势,但从用户活跃度和转化效率来看,线上拉新模式的用户质量更高。
同期群分析通过量化行为指标,分析不同群体在特定时间段内的行为变化,帮助我们衡量用户在社群中的活跃情况。
通过同期群分析,我们发现:
这进一步证实了线上拉新模式在用户活跃度方面的优势。
给大家介绍3种非常实用的数据分析模型:
帕累托分析模型基于帕累托原则(80/20法则),通过识别和聚焦于最重要的20%因素来优化资源和提升效率。
举个例子,假设我们是一家电子商务公司,想要分析造成订单延迟的原因,并使用帕累托分析模型确定最主要的问题因素。
根据帕累托图,我们发现物流问题和系统故障占据了主要的比例,合计占据了约80%的订单延迟原因。因此,我们可以将重点放在解决这两个问题上,以最大程度地缩短订单的延迟时间。
在使用帕累托分析模型时,需要注意以下几点:
波士顿矩阵模型是一种经典的产品组合分析工具,用于评估企业产品组合中各个产品的市场增长率和市场份额。
举个例子,假设我们是一家消费电子公司,拥有多款产品,现在我们来模拟数据并应用波士顿矩阵模型进行分析。
通过这张图,我们可以将各产品定位到波士顿矩阵的不同象限中。
比如:产品A定位为明星产品,产品B为问题产品, 产品C为现金牛,产品D为瘦狗产品。根据不同定位,我们可以制定相应的战略,比如加大对产品B的市场投入以提升其市场份额,优化产品C的成本结构以提高利润率等。
数据分析模型和方法有很多,在工作中可以根据实际需要灵活选择。
漏斗模型是用户行为分析中最重要的模型之一,用于跟踪用户在完成特定目标过程中的流失情况。
其核心步骤包括:
学习入口:https://edu.cda.cn/goods/show/3853?targetId=6765&preview=0
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15