
持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会发现这么一个问题:许多产品虽无实际功效,但通过巧妙包装和心理暗示,也能让客户产生积极反馈和强烈的购买意愿。
这说明,在各类运营或销售场景中,客户购买与否,其实最终取决于其对产品价值的主观感知。价值的塑造在很大程度上是主观的,客户认为有价值,产品便有价值。
关于销售战略与战术应用的方法有很多,今天我和大家重点分享下如何通过动态分级来快速分析用户行为和转化数据,高效实现销售目标转化。
销售的整个过程,其实就是一个漏斗模型,其核心是要求我们应将80%的精力聚焦于那20%的关键客户群体。为此,清晰的客户分层与精准的标签化识别至关重要。
通过标签,可明确客户是优先级高、中等,还是可有可无。以某APP访问者为例,她频繁访问网站、多次在线咨询,并索要具体学习方案。那么基于这些行为数据,她就可以被标注为焦虑等级Lv8、决策权90%的高意向客户。
对用户进行分级和打标签能帮助我们精准识别,进而安排客服人员迅速跟进,确保在黄金48小时内拿下该客户。这里我们先介绍两种方法:
若客户处于危急状态,48小时内未得到跟进,这表明他们已明确发出急迫信号,如点击咨询、索要资料等,表明其对服务或课程有强烈需求。
若我们未能及时响应,客户极可能转向其他机构成交,导致我们的流失率急剧上升。因此,建立客户清单并严格执行48小时跟进机制,能显著降低流失率。
实战沙盘是通过分析每月客户数据和营收情况,筛选出优先级高的客户,进一步优化转化流程。
假设每月有627个潜在客户线索,对应营收目标为97万元。通过实战沙盘分析,可明确符合优先级的客户数量。从线索获取开始,依据标签匹配度筛选,考量线索有效性及跟进情况,逐层筛选,精准定位高价值客户,从而优化资源分配,提高销售效率。
用户分级和标签化是对海量数据进行筛选分析的基础,关于数据分析的方法和知识点内容多且较为分散,建议考过CDA数据分析师,CDA数据分析师一级考察的内容除了指标体系、数据解读外,还包括用户画像分析等,集中学习后对能力提升很大。
对用户数据进行分级和识别的目的是为了更精准地找到目标用户。
通过智能筛选系统能够辅助我们从海量数据中精准筛选出具有转化潜力的客户。在筛选过程中,我们会剔除无效沟通的客户,例如那些无法取得联系或长时间未回复的潜在客户。也可以快速识别用户退费、续课情况等。
通过筛选,我们可以重点关注以下问题:
建立用户跟进机制最关键的一步是设定明确的跟进时间节点。若某客户的数据在公海中超过30天未被跟进,该数据将重新分配给新的顾问,以确保每位客户都能得到及时的关注与跟进。
在触达客户时,关键节点的选择至关重要。这些节点可以是营销节点,如618、双11等大型促销活动,也可以是节假日等特殊时期。这些触达点的设置,更多地是为了体现人文关怀,让客户感受到我们不仅关注他们的消费行为,更关心他们作为个体的感受。通过这种方式,偶尔的触达和激活就足以重新唤起客户的兴趣。
此外,我们强调黄金48小时跟进机制的重要性。对于优先级较高的客户,应尽快与其取得联系,确保在客户最需要的时刻提供服务,从而有效提升成交率。
在销售过程中,我们还需关注退费率和现金流断裂的风险。在与客户沟通时,应如实告知实际情况,避免过度承诺。一旦出现资金流断裂,公司运营将受到严重影响,甚至可能导致客户退费,因此需要格外谨慎。
退费问题同样关键。预收款模式下,如客户购买三个月或更长期的课包,实际到账金额基于消耗课时计算。高退费率会直接导致学校现金流断裂。
对用户分层和筛选是为了更好地推进销售,为此我们构建了一个五维客户价值模型,从上至下依次分析客户购买意愿和我们的推进策略。
这五个维度分别是:响应速度、支付力信号、教育焦虑值、决策链长度、历史行为。
首次咨询后,客户的响应频率和沟通积极性至关重要。如果客户对我们的沟通热情回应积极,说明其对产品或服务有较高的兴趣和需求。
客户响应次数和支付能力信号是重要的评估指标。例如,客户主动询问课程价格、套餐内容以及是否支持分期付款等问题,这些行为均属于试探性的支付信号。
焦虑值越高,表明个体越渴望迅速完成交易,例如购买课程并立即开始学习。相反,焦虑值越低,个体可能对是否购买持犹豫态度,倾向于再观望一段时间。对于销售顾问和教育培训机构而言,焦虑值是极为有效的工具,可用于辅助快速促成交易,且该工具具有可量化性。
决策链路和决策人是关键因素。以TOB业务为例,我们的首要任务是找到关键决策人,这通常可以通过网络搜索等方式实现。在教育培训机构中,同样需要明确决策人。
例如,在电话沟通中,我们会询问:“小朋友的教育通常由谁负责?是爸爸、妈妈还是其他亲属?”这样做的目的是确认谁是决策人,避免与非决策人进行长时间沟通。
过往行为也是评估客户的重要方面。例如,在减重服务场景中,我们会询问客户是否有过减重经历,是否尝试过减重产品等。通过了解客户的过往行为,我们可以洞察其需求和动机,判断其是否了解相关产品,并评估其是否会再次选择我们的服务。这有助于我们更清晰地了解客户的价值模型。
响应速度、支付信号、焦虑值、决策人以及历史行为这五个方面,能够帮助我们更好地了解客户的优先级。在客户决策过程中,可以将客户分为三类:高价值客户、中价值客户和无效客户。
通过动态分级智能分析,企业能够更精准地识别高价值客户,优化资源分配,提升销售效率。同时,通过痛点分析和价值塑造,企业能够更好地满足客户需求,提升客户满意度,实现长期稳定发展。
通过动态分级提高数据分析的效率是一种非常有效的方法,数据分析能帮助我们采用更加精准的销售战略。CDA一级考察业务数据分析,Excel,SQL,多维数据处理,统计学以及PowerBI数据可视化。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术》一书中指出:AI思维, ...
2025-07-17数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10