
持证人简介:
CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有丰富的行业经验。
从理解“我们需要什么样的报表”,到掌握“基于业务的数据分析五步曲”,再到学会“Excel动态报表设计”的方法,我们距离用数据驱动决策又近了一步。
如果大家想听刘老师完整版分享视频,可以点击下方链接。
学习入口:https://edu.cda.cn/goods/show/3810?targetId=6583&preview=0
可视化报表是通过图表、图形等可视化元素,将抽象的数据信息呈现为直观、易理解的形式。
相较于传统的表格和文字报表,可视化报表更加生动、直观,能够更好地传达数据的趋势、关联和变化。它强调通过视觉感知,让用户能够更迅速、准确地理解复杂的数据关系。
可视化报表通过图表和图形的方式,更生动地展示数据的趋势和变化。相对于传统表格中冗长的数字,图表可以直观地描绘数据的波动、增长趋势等。
可视化报表工具通常支持交互性的操作,能够实现各个表之间的数据联动。这种交互性使得用户能够更深入地挖掘数据,发现隐藏在庞大数据集中的关联性和模式。
可视化报表通过图表和图形的形式,将复杂的数据关系以直观、生动的方式传递给用户。这有助于降低信息的认知难度,使得非专业人员也能够轻松理解数据。
可视化报表可以通过颜色、标签等方式强调异常点和关键数据。这使得用户在大量数据中更容易发现异常情况或关键趋势,而在传统表格中可能需要更多的时间和专业知识。
可视化报表使得比较和分析更为直观。通过将数据以图形的形式呈现,用户能够更容易比较不同时间段、不同类别的数据。
拥有好的报表工具和呈现形式是基础,但更核心的是科学的数据分析流程。如何确保我们的分析是围绕业务目标、解决实际问题的呢?这里介绍一个“基于业务的数据化分析五步曲”。
这是数据分析的起点和灵魂。首先要清晰地定义:我们要分析什么?解决什么业务问题?期望达到什么目标?明确分析的价值所在。例如,目标是提升销售额,问题可能是“哪个区域/产品的销售额下降了?原因是什么?”
明确问题后,需要确定从哪里获取相关数据(来源),需要哪些数据(范围),以及数据更新的频率(频率)。
获取原始数据后,往往需要进行清洗、整理和构建。这包括建立规范的“实体”数据表(例如产品表、客户表、订单表),定义表之间的关联(数据关系模型),并设计清晰的表结构。保证数据的准确性、一致性和可用性。
这是将数据转化为信息的关键步骤。需要根据分析目标,选择合适的数据分析模型(如对比分析、趋势分析、构成分析等),建立关键的数据分析指标(如销售额、增长率、利润率、用户活跃度等),并设定计算逻辑。
最后一步是将分析结果有效地呈现出来。通过动态化、可视化的报表,从多个角度展示数据分析结果,将复杂的分析过程和结论,以最“好看、好懂、好快”的方式传递给决策者,最终实现数据分析的商业价值。
这五个步骤环环相扣,强调从业务出发,到数据采集、处理、分析,最终回归业务价值呈现,形成一个闭环。
提到数据分析和报表制作,Excel 是绕不开的神器。很多人以为Excel只能做静态报表,其实,它完全有能力构建出色的动态报表!主要有以下几种常用方法:
这是Excel中最常用也相对简单的动态报表构建方式。通过透视表快速汇总、聚合数据,再结合切片器(和日程表)作为交互控件,用户只需点击切片器按钮,就能轻松筛选不同维度(如时间、区域、产品类别等),报表和图表会随之动态更新。
这种方法更灵活,自由度更高。我们可以利用Excel强大的函数体系(如 VLOOKUP, SUMIFS, INDEX, OFFSET, INDIRECT 等查找引用和计算函数),结合表单控件(如下拉框、复选框、滚动条、选项按钮等)来创建交互界面。用户通过操作控件选择条件,函数根据控件返回的值动态提取和计算数据,从而驱动报表更新。
无论使用哪种方法,设计动态报表时,通常也遵循 三层结构 的思路:
业务闭环与数字化运营的前提是建立在数据洞察和分析策略的基础上,CDA一级考察业务数据分析,Excel,SQL,多维数据处理,统计学以及PowerBI数据可视化。
如果大家想听刘老师完整版分享视频,可以点击下方链接。
学习入口:https://edu.cda.cn/goods/show/3810?targetId=6583&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26