
在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库和开发工具,为数据科学、机器学习等领域的学习者和从业者提供了极大便利。如果你正准备投身 Python 课程学习,那么正确安装 Anaconda 就是关键的第一步。本文将详细且清晰地为你介绍在 Windows 系统和 MacOS 系统下的 Anaconda 安装教程,让你轻松搞定安装难题,快速开启 Python 学习之旅。
注:分Windows系统下安装和MacOS系统安装
第①步 在清华大学镜像下载Anaconda安装包。
下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D
下载完成之后,双击下图所示的exe安装文件
第②步 点击Next进行下一步安装
第③步 同意协议,选择I Agree
第④步 选择用户,如果是多用户的选择All Users
第⑤步 指定安装路径,点击Next
第⑥步 这里先不用选第一个选项:Add Anaconda3 to the System PATH environment variable,只勾选第二个Register。推荐安装之后手动配置系统变量System PATH environment,避免配置导致后期使用上的问题。
第⑦步 需要静等一会儿!看到Completed即表示安装完成,后面连续点击Next即可
有时候在安装好Anaconda后,在cmd黑色命令窗口使用一些命令时依然会出现类似:
'conda' 不是内部或外部命令,也不是可运行的程序或批处理文件。
这样的情况大部分是因为在安装的时候,没有勾选将Anaconda环境变量路径自动加入到系统的环境变量中或者有的时候勾选了自动添加也没有设置成功
步骤如下:
进入"我的电脑"-右键-属性-高级系统设置-高级-环境变量
第 ① 步 点击环境变量
第 ② 步 点击环境变量的系统变量里面的"Path"
第 ③ 步 在path中加入你电脑系统安装的Anaconda对应的path环境路径
根据自己的安装路径填写以下3个,示意图中是在默认位置安装的,自选安装路径的话,path路径前面部分不一样,后面部分一样,也是以Anaconda3, Anaconda3Librarybin, Anaconda3Scripts 这样结尾的。
添加以下路径到环境变量中去:(以默认的安装路径为例)
C:ProgramDataAnaconda3
C:ProgramDataAnaconda3Scripts
C:ProgramDataAnaconda3Librarybin
第 ④ 步 然后确定,确定,一路按确定,这样环境就配置完成了。
补充 怎么找我的Anaconda环境变量Path路径文件?
方法如下:
① 对"jupyter notebook"的快捷方式右击--属性
② 然后点击**"打开文件所在位置"**,此时弹出的地址就有我们要的文件路径
③ 鼠标上滑,就可以看到我们要的Anaconda的Path路径对应的文件夹了
如果是老版的win系统,创建环境变量
添加文件路径,需要用英文的分号进行分隔
比如:
我选在变量值前面添加环境变量
C:ProgramDataAnaconda3;C:ProgramDataAnaconda3Librarybin;连接原来的存在的变量值
这里我是举了一个例子,需要根据自己的实际安装路径添加哦
第 ① 步:在清华大学镜像下载地址下载安装包:[https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D](https://link.zhihu.com/?target=https%3A//mirrors.tuna.tsinghua.edu.cn/anaconda/archive/%3FC%3DM%26O%3DD =400x)
第 ② 步:打开终端执行命令:bash /Users/fty/Downloads/Anaconda3-2023.09-0-MacOSX-x86_64.sh
第 ③ 步:执行上一步后,就会显示welcome,然后根据它的提示,需要enter的时候就按回车
第 ④ 步:一路回车……直到看到下图提示,输入yes,回车。注意:这里会有一个提示就是安装的路径。
第 ⑤ 步:输入enter
第 ⑥ 步:继续输入yes,回车
第 ⑦ 步:看见**“Thank you for installing Anaconda3!**”表明安装成功啦~~~
输入conda info 测试
掌握了 Anaconda 的安装方法,就为你学习 Python 课程打下了坚实的基础。在后续的 Python 学习过程中,Anaconda 集成的丰富库和工具将助力你更高效地学习和实践,无论是数据分析、机器学习,还是其他 Python 应用领域,都能轻松应对。现在就行动起来,安装好 Anaconda,开启你的 Python 编程精彩之旅吧!
课程学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
数据分析,未来已来,免费的学习机会不容错过,期待在课程中与你一同开启数据洞察新世界
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10