京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督学习有Label Propagation和Label Spreading两种。他们的主要区别是第二种方法带有正则化机制。
我们在上篇已经讲解了Label Propagation,本篇我们讲解带有正则的Label Spreading。首先生成一些凹的数据。
# 生成环形数据
import numpy as np
from sklearn.datasets import make_circles
X, y = make_circles(n_samples=200, shuffle=False)
outer, inner = 0, 1
labels = np.full(200, -1.0)
labels[0] = outer
labels[-1] = inner
# 画图
import matplotlib.pyplot as plt
plt.figure(figsize=(4, 4))
plt.scatter(X[labels == outer, 0], X[labels == outer, 1],)
plt.scatter(X[labels == inner, 0], X[labels == inner, 1],)
plt.scatter(X[labels == -1, 0], X[labels == -1, 1], marker=".",);

Label Spreading(标签扩散)算法是一种用于半监督学习的方法,它在Label Propagation的基础上引入了正则化机制。这种机制使得算法在处理噪声数据时更为稳定和健壮。下面是Label Spreading算法的迭代计算过程的详细介绍:
和Label Propagation一样,Label Spreading首先构建一个图,图中的每个节点代表一个数据样本,节点可以是已标记的也可以是未标记的。
节点之间的边表示数据点之间的相似性。这种相似性通常用距离度量(如欧氏距离)或核函数(如高斯核)来计算。边的权重反映了两个数据点之间的相似度。
每个数据点都有一个标签分布向量。对于已标记的数据,这个向量直接表示其标签信息。对于未标记的数据,初始时这个向量通常是均匀分布,或者有其他的初始化方法。
Label Spreading算法构建了一个传播矩阵,用于在迭代过程中更新标签信息。这个矩阵基于节点的相似性权重,但与Label Propagation不同的是,它会引入一个正则化项。
在每次迭代中,对于每个未标记节点,其标签分布根据邻居节点(包括已标记和未标记的节点)的标签信息进行更新。具体地,一个节点的新标签分布是其所有邻居节点的标签分布的加权平均,这个权重由传播矩阵给出。
正则化是Label Spreading的一个关键特点。它帮助算法抵抗噪声和过拟合,提高了算法的鲁棒性。正则化参数控制着标签信息在未标记数据之间传播的强度。
更新完所有未标记节点的标签分布后,这些分布通常需要被归一化,确保它们是有效的概率分布。
算法重复迭代更新过程,直到满足某个收敛条件,如迭代次数上限或者标签分布的变化小于某个阈值。
一旦算法收敛,每个未标记数据点的标签被确定为其标签分布中概率最高的标签。
总的来说,Label Spreading是一个强大而灵活的工具,适用于各种半监督学习场景,尤其是在数据标签稀缺或包含噪声的情况下。
在实际应用中,银行利用标签处理技术构建反欺诈模型,通过对用户行为、交易特征等多维度数据进行分析,定义并应用各种风险标签。这些标签可以帮助银行快速识别异常交易行为,提升反欺诈能力。例如,通过分析黑样本案例特征,银行可以定义如“当天还款后立即交易”等标签,并将其应用于反诈模型的开发和训练。
在Label Spreading算法中,正则化传播矩阵是核心组件之一,用于在迭代过程中调整和传播标签信息。这个传播矩阵通过结合图的相似性结构和正则化机制,有效地平衡了标签信息的传播和抗噪声能力。以下是正则化传播矩阵的关键点:
首先,算法构建一个图,为每个数据点准备一个标签矩阵Y。对于已标记的数据点,标签矩阵的相应行用其标签的独热编码(one-hot encoding)表示;对于未标记的数据点,标签矩阵的相应行初始化为均匀分布或其他方式。
然后,基于KNN或RBF核等方法计算相似性矩阵(通常表示为S),其中每个元素Sij表示节点i和j之间的相似度。
相似性矩阵接着被归一化,以便每个节点的相似度总和为1。这可以通过对矩阵S 的每一行进行归一化来实现,得到归一化的矩阵T。
正则化传播矩阵由归一化的相似性矩阵和一个正则化参数α构建而成。通常,P的计算公式为
其中I是单位矩阵,α是一个介于0和1之间的参数,用于控制传播过程中的正则化程度。
作用:参数α控制了标签信息在原始标签和邻居标签间的平衡。较小的α值更强调邻居节点的标签信息,而较大的α值使算法更加倾向于保持原始标签。 抗噪声能力:通过调整α,Label Spreading算法能够在保持数据内在结构的同时对噪声数据具有一定的抵抗力。
在每次迭代中,当前的标签矩阵Y通过乘以传播矩阵P来更新,即
这样,每个数据点的新标签不仅反映了其邻居的标签信息,也考虑了自身的原始标签α,且受正则化参数的影响。 更新后的标签矩阵Y通常需要被重新归一化,以确保每行(代表一个数据点的标签分布)的总和为1。
这个更新过程重复进行,直到满足某个收敛条件,例如标签矩阵Y的变化小于某个预设的阈值,或者达到预设的最大迭代次数。
一旦算法收敛,每个未标记数据点的标签被确定为其标签分布中概率最高的那个标签。
在Label Spreading算法中,标签矩阵Y用于表示数据点的标签信息。这个矩阵的结构取决于数据集中的标签数量和数据点的数量。下面是标签矩阵的一般结构和特点:
1.结构
尺寸:标签矩阵Y的尺寸是 N*K ,其中N是数据集中数据点的总数(包括已标记和未标记的数据点),而K是不同标签的数量。
内容:
对于已标记的数据点,每一行对应一个数据点,其中每个元素代表该数据点属于某个标签的概率。在典型的实现中,已标记数据的行会用独热编码(one-hot encoding)表示,即对应该数据点实际标签的位置为1,其余位置为0。
对于未标记的数据点,每一行一开始通常初始化为均匀分布,即每个标签的概率相等,或者根据先验知识进行初始化。
2.示例 假设有一个数据集,其中有3个不同的标签(K = 3),共有5个数据点(N = 5),其中前2个点已标记,后3个点未标记。标签矩阵Y可能如下所示:
在这个例子中,第一行和第二行分别表示第一个和第二个数据点的标签(假设分别属于第一个和第二个类别),而最后三行表示未标记数据点的标签分布,这里初始化为均匀分布。
# Label Spreading
from sklearn.semi_supervised import LabelSpreading
label_spread = LabelSpreading(kernel="knn", alpha=0.8) # 正则
label_spread.fit(X, labels)
# Label Spreading打标签后的结果
output= np.asarray(label_spread.transduction_)
outer_numbers = np.where(output == outer)[0]
inner_numbers = np.where(output == inner)[0]
plt.figure(figsize=(4, 4))
plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1],)
plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1],)

随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。

CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12