
俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选合适的图、选合适的工具画图(例如能交互的图就比静态图更吸引人)。
图形的选择可以参考CDA数据分析师认证一级教材中关于图表与分析场景的对应关系来选择合适的图。
本文主要给大家分享一款绘图工具,可以绘制能交互的图形,这个工具就是PyEcharts
PyEcharts为啥画的一手好图?因为他有个“好爸爸”-Echarts。Echarts是百度开源的,目前托管在Apache软件基金会。它底层由JavaScripts实现,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器。ECharts 提供了常规的折线图、柱状图、散点图、饼图、K线图,用于统计的盒形图,用于地理数据可视化的地图、热力图、线图,用于关系数据可视化的关系图、treemap、旭日图,多维数据可视化的平行坐标,还有用于 BI 的漏斗图,仪表盘,并且支持图与图之间的混搭。
Echarts虽有千般好,but JavaScripts这个前端语言对于大部分数据分析师而言是一个屏障,所以有几位大佬开发出PyEcharts,这其实是通过Python语言对Echarts做了封装,会Python的数据分析师便能快速上手使用Echarts了。
PyEcharts版本迭代比较快,差异较大的是0.5.x 与新的 1.x 、2.x版本之间差异较大。并且官方也不再持续对0.5.x系列更新迭代了,所以本文采用的是1.x、2.x的写法演示如何应用PyEcharts进行绘图。
导入要绘制的图形对象的构造函数,常见的图表几乎都在charts里面了。
from pyecharts.charts import Bar
# 这里导入的是柱形图Bar,还可以是Line折线图、Pie饼图等
使用构造函数初始化图形对象
bar = Bar()
接下来添加x轴的数据
bar.add_xaxis(["2021","2022","2023","2024","2025"])
添加y轴数据,第一个参数是系列名称(例如一张图可以绘制多组柱状图,一个系列就是一个组)
bar.add_yaxis("A组销售额",y_axis=[1000,3000,2500,4000,3900])
bar.add_yaxis("B组销售额",y_axis=[2000,3500,3500,3000,3500])
最后通过render或者render_notebook函数将图形绘制出来。
bar.render_notebook()
# 适合在jupyter notebook环境下直接在cell下面显示。
如果使用的是render可以将图形渲染到html(网页文件)中去,可以传入指定的文件名。
bar.render("历年销售数据.html")
上面的代码生成了历史销售数据.html这个网页文件了。
双击打开就可以在浏览器看到图形了。
简单的绘图上面的操作就够了,如果想让图形更炫酷,则需要更多的代码雕琢。如何在PyEcharts里面实现其他额外的功能呢,通过配置项即可。PyEcharts里有一句话叫“一切皆配置”,就是任何需求都由配置来实现。
所有的配置类型都在options模块下,约定俗成的导入方式如下:
import pyecharts.options as opts
接下来初始化柱状图对象时为其做初始化配置(init_opts),在初始化配置中设置一套PyEcharts自带的主题。
from pyecharts.globals import ThemeType
bar2 = Bar(init_opts=opts.InitOpts(theme=ThemeType.SHINE))
后续代码一样,添加数据,渲染致jupyter notebook。
bar2.add_xaxis(["2021","2022","2023","2024","2025"])
bar2.add_yaxis("A组销售额",y_axis=[1000,3000,2500,4000,3900])
bar2.add_yaxis("B组销售额",y_axis=[2000,3500,3500,3000,3500])
bar2.render_notebook()
看起来与之前的图还是有很大区别的,例如配色。PyEcharts还有很多主题可以有不同的视觉效果。
bar3 = Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
以上就是PyEcharts的基本用法,如果你学会了绘制常见的一些图形完全没有问题。更多的细节用法可以关注PyEcharts官方文档或者我们的系列文章。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11