京公网安备 11010802034615号
经营许可证编号:京B2-20210330
考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额外的未标记数据,更好地捕捉数据分布的潜在形状,并在新样本上的泛化能力更强。当我们只有非常少量的已标记数据,同时有大量未标记数据点时,这种算法可以表现得非常出色。
在sklearn中,基于图算法的半监督学习有Label Propagation和Label Spreading两种。他们的主要区别是第二种方法带有正则化机制。
Label Propagation算法基于图理论。算法首先构建一个图,其中每个节点代表一个数据点,无论是标记的还是未标记的。节点之间的边代表数据点之间的相似性。算法的目的是通过图传播标签信息,使未标记数据获得标签。
相似性度量:通常使用K近邻(KNN)或者基于核的方法来定义数据点之间的相似性。
标签传播:标签信息从标记数据点传播到未标记数据点,通过迭代过程实现。
适用场景:适合于数据量较大、标记数据稀缺的情况。
Label Spreading和Label Propagation非常相似,但在处理标签信息和正则化方面有所不同。它同样基于构建图来传播标签。
正则化机制:Label Spreading引入了正则化参数,可以控制标签传播的过程,使算法更加健壮。
稳定性:由于正则化的存在,Label Spreading在面对噪声数据时通常比Label Propagation更稳定。
适用场景:同样适用于有大量未标记数据的情况,尤其当数据包含噪声时。
本文首先介绍Label Propagation,带有正则的Label Spreading 将在下篇介绍。首先生成一些凹的数据。
# 生成环形数据
import numpy as np
from sklearn.datasets import make_circles
X, y = make_circles(n_samples=200, shuffle=False)
outer, inner = 0, 1
labels = np.full(200, -1.0)
labels[0] = outer
labels[-1] = inner
# 画图
import matplotlib.pyplot as plt
plt.figure(figsize=(4, 4))
plt.scatter(X[labels == outer, 0], X[labels == outer, 1],)
plt.scatter(X[labels == inner, 0], X[labels == inner, 1],)
plt.scatter(X[labels == -1, 0], X[labels == -1, 1], marker=".",);

标签处理是CDA数据分析师二级考试的核心内容,在给工商银行等银行做内训时,这一部分技能是银行最重视的,因为银行防作弊放欺诈最核心的就是对用户打标签,如果大家想提升这块的能力,点击下方链接。
Label Propagation算法的迭代计算过程是基于图论原理的。在这个过程中,算法首先构建一个图,其中每个节点代表一个数据点,然后通过图中的连接来传播标签信息。下面是详细的步骤介绍:
首先,算法构建一个图,图中的每个节点代表一个数据样本。这些节点包括已标记的节点和未标记的节点。
在图中,节点之间的边代表数据点之间的相似性。这种相似性通常通过一些度量来计算,比如欧几里得距离(用于K近邻方法)或者基于核的相似性函数(如高斯核)。每条边的权重反映了两个节点之间的相似度。
对于每个数据点,算法维护一个标签分布向量。对于已标记的数据点,这个向量直接反映了其标签信息。对于未标记的数据点,标签分布初始通常是均匀的,或者用其他方式初始化。
接下来,算法进入迭代过程。在每次迭代中,每个未标记节点的标签信息会根据其邻居节点(包括已标记和未标记的节点)的标签信息进行更新。具体来说,一个节点的新标签分布是其所有邻居节点的标签分布的加权平均,权重由相似性权重决定。
更新完所有未标记节点的标签分布后,通常需要对这些分布进行归一化处理,以确保它们表示有效的概率分布。
这个过程会不断迭代,直到达到某个收敛条件,比如迭代次数达到预设的上限,或者标签分布的变化小于某个阈值。
一旦算法收敛,每个未标记数据点的标签被确定为其标签分布中概率最高的标签。
# Label Propagation
from sklearn.semi_supervised import LabelPropagation
label_propagation = LabelPropagation(kernel="knn")
label_propagation.fit(X, labels)
# Label Propagation打标签后的结果
output= np.asarray(label_propagation.transduction_)
outer_numbers = np.where(output == outer)[0]
inner_numbers = np.where(output == inner)[0]
plt.figure(figsize=(4, 4))
plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1],)
plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1],);

注意参数kernel="knn"。可以发现,若把kernel换成rbf,则无法得到正确传播结果。这是因为rbf是考虑全局的数据分布,因此内圈初始的标签扩散出去后很难被更新。KNN只考虑局部,不会出现此问题。
数据量大,计算资源有限。
数据点分布稀疏,且局部邻域信息足够区分标签(如聚类明显的情况下)。
数据量较小或中等,计算资源充足。
数据点分布紧密,且需要捕获全局信息(如图像或文本的复杂分布)。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。

CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12