
考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额外的未标记数据,更好地捕捉数据分布的潜在形状,并在新样本上的泛化能力更强。当我们只有非常少量的已标记数据,同时有大量未标记数据点时,这种算法可以表现得非常出色。
在sklearn中,基于图算法的半监督学习有Label Propagation和Label Spreading两种。他们的主要区别是第二种方法带有正则化机制。
Label Propagation算法基于图理论。算法首先构建一个图,其中每个节点代表一个数据点,无论是标记的还是未标记的。节点之间的边代表数据点之间的相似性。算法的目的是通过图传播标签信息,使未标记数据获得标签。
相似性度量:通常使用K近邻(KNN)或者基于核的方法来定义数据点之间的相似性。
标签传播:标签信息从标记数据点传播到未标记数据点,通过迭代过程实现。
适用场景:适合于数据量较大、标记数据稀缺的情况。
Label Spreading和Label Propagation非常相似,但在处理标签信息和正则化方面有所不同。它同样基于构建图来传播标签。
正则化机制:Label Spreading引入了正则化参数,可以控制标签传播的过程,使算法更加健壮。
稳定性:由于正则化的存在,Label Spreading在面对噪声数据时通常比Label Propagation更稳定。
适用场景:同样适用于有大量未标记数据的情况,尤其当数据包含噪声时。
本文首先介绍Label Propagation,带有正则的Label Spreading 将在下篇介绍。首先生成一些凹的数据。
# 生成环形数据
import numpy as np
from sklearn.datasets import make_circles
X, y = make_circles(n_samples=200, shuffle=False)
outer, inner = 0, 1
labels = np.full(200, -1.0)
labels[0] = outer
labels[-1] = inner
# 画图
import matplotlib.pyplot as plt
plt.figure(figsize=(4, 4))
plt.scatter(X[labels == outer, 0], X[labels == outer, 1],)
plt.scatter(X[labels == inner, 0], X[labels == inner, 1],)
plt.scatter(X[labels == -1, 0], X[labels == -1, 1], marker=".",);
标签处理是CDA数据分析师二级考试的核心内容,在给工商银行等银行做内训时,这一部分技能是银行最重视的,因为银行防作弊放欺诈最核心的就是对用户打标签,如果大家想提升这块的能力,点击下方链接。
Label Propagation算法的迭代计算过程是基于图论原理的。在这个过程中,算法首先构建一个图,其中每个节点代表一个数据点,然后通过图中的连接来传播标签信息。下面是详细的步骤介绍:
首先,算法构建一个图,图中的每个节点代表一个数据样本。这些节点包括已标记的节点和未标记的节点。
在图中,节点之间的边代表数据点之间的相似性。这种相似性通常通过一些度量来计算,比如欧几里得距离(用于K近邻方法)或者基于核的相似性函数(如高斯核)。每条边的权重反映了两个节点之间的相似度。
对于每个数据点,算法维护一个标签分布向量。对于已标记的数据点,这个向量直接反映了其标签信息。对于未标记的数据点,标签分布初始通常是均匀的,或者用其他方式初始化。
接下来,算法进入迭代过程。在每次迭代中,每个未标记节点的标签信息会根据其邻居节点(包括已标记和未标记的节点)的标签信息进行更新。具体来说,一个节点的新标签分布是其所有邻居节点的标签分布的加权平均,权重由相似性权重决定。
更新完所有未标记节点的标签分布后,通常需要对这些分布进行归一化处理,以确保它们表示有效的概率分布。
这个过程会不断迭代,直到达到某个收敛条件,比如迭代次数达到预设的上限,或者标签分布的变化小于某个阈值。
一旦算法收敛,每个未标记数据点的标签被确定为其标签分布中概率最高的标签。
# Label Propagation
from sklearn.semi_supervised import LabelPropagation
label_propagation = LabelPropagation(kernel="knn")
label_propagation.fit(X, labels)
# Label Propagation打标签后的结果
output= np.asarray(label_propagation.transduction_)
outer_numbers = np.where(output == outer)[0]
inner_numbers = np.where(output == inner)[0]
plt.figure(figsize=(4, 4))
plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1],)
plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1],);
注意参数kernel="knn"。可以发现,若把kernel换成rbf,则无法得到正确传播结果。这是因为rbf是考虑全局的数据分布,因此内圈初始的标签扩散出去后很难被更新。KNN只考虑局部,不会出现此问题。
数据量大,计算资源有限。
数据点分布稀疏,且局部邻域信息足够区分标签(如聚类明显的情况下)。
数据量较小或中等,计算资源充足。
数据点分布紧密,且需要捕获全局信息(如图像或文本的复杂分布)。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21