
import pandas as pd
d = pd.DataFrame(['a', 'b', 'c'],columns = ['A'])
d
A | |
---|---|
0 | a |
1 | b |
2 | c |
将某列元素拼接一列特定字符串
d['A'].str.cat(['A', 'B', 'C'], sep=',')
0 a,A
1 b,B
2 c,C
Name: A, dtype: object
将某列的元素合并为一个字符串
d['A'].str.cat(sep=',')
'a,b,c'
import numpy as np
import pandas as pd
d = pd.DataFrame(['a_b_c', 'c_d_e', np.nan, 'f_g_h'],columns = ['A'])
d
A | |
---|---|
0 | a_b_c |
1 | c_d_e |
2 | NaN |
3 | f_g_h |
将某列的字符串元素进行切分
d['A'].str.split('_')
0 [a, b, c]
1 [c, d, e]
2 NaN
3 [f, g, h]
Name: A, dtype: object
d = pd.DataFrame(['a_b_c', 'c_d_e', np.nan, 'f_g_h'],columns = ['A'])
d['A']
0 a_b_c
1 c_d_e
2 NaN
3 f_g_h
Name: A, dtype: object
d['A'].str.get(2)
0 b
1 d
2 NaN
3 g
Name: A, dtype: object
d = pd.DataFrame(['a_b_c', 'c_d_e', np.nan, 'f_g_h'],columns = ['A'])
d['A']
0 a_b_c
1 c_d_e
2 NaN
3 f_g_h
Name: A, dtype: object
d['A'].str.join("!")
0 a!_!b!_!c
1 c!_!d!_!e
2 NaN
3 f!_!g!_!h
Name: A, dtype: object
d['A'].str.contains('d')
0 False
1 True
2 NaN
3 False
Name: A, dtype: object
d.fillna('0')[d.fillna('0')['A'].str.contains('d')]
A | |
---|---|
1 | c_d_e |
d.fillna('0')[d['A'].fillna('0').str.contains('d|e')]
#表示或的关系用"A|B",表示且用'A.*B|B.*A'
A | |
---|---|
1 | c_d_e |
d['A'].str.replace("_", ".")
0 a.b.c
1 c.d.e
2 NaN
3 f.g.h
Name: A, dtype: object
d['A'].str.repeat(3)
0 a_b_ca_b_ca_b_c
1 c_d_ec_d_ec_d_e
2 NaN
3 f_g_hf_g_hf_g_h
Name: A, dtype: object
d['A'].str.pad(10, fillchar="0")
0 00000a_b_c
1 00000c_d_e
2 NaN
3 00000f_g_h
Name: A, dtype: object
d['A'].str.pad(10, side="right", fillchar="?")
0 a_b_c?????
1 c_d_e?????
2 NaN
3 f_g_h?????
Name: A, dtype: object
d['A'].str.center(10, fillchar="?")
0 ??a_b_c???
1 ??c_d_e???
2 NaN
3 ??f_g_h???
Name: A, dtype: object
d['A'].str.ljust(10, fillchar="?")
0 a_b_c?????
1 c_d_e?????
2 NaN
3 f_g_h?????
Name: A, dtype: object
d['A'].str.rjust(10, fillchar="?")
0 ?????a_b_c
1 ?????c_d_e
2 NaN
3 ?????f_g_h
Name: A, dtype: object
d['A'].str.zfill(10)
0 00000a_b_c
1 00000c_d_e
2 NaN
3 00000f_g_h
Name: A, dtype: object
d['A'].str.wrap(3)
0 a_bn_c
1 c_dn_e
2 NaN
3 f_gn_h
Name: A, dtype: object
d['A'].str.slice(1,3)
0 _b
1 _d
2 NaN
3 _g
Name: A, dtype: object
d['A'].str.slice_replace(1, 3, "?")
0 a?_c
1 c?_e
2 NaN
3 f?_h
Name: A, dtype: object
d['A'].str.count("b")
0 1.0
1 0.0
2 NaN
3 0.0
Name: A, dtype: float64
d['A'].str.startswith("a")
0 True
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.endswith("e")
0 False
1 True
2 NaN
3 False
Name: A, dtype: object
d['A'].str.findall("[a-z]")
0 [a, b, c]
1 [c, d, e]
2 NaN
3 [f, g, h]
Name: A, dtype: object
d['A'].str.match("[d-z]")
0 False
1 False
2 NaN
3 True
Name: A, dtype: object
d['A'].str.extract("([d-z])")
0 | |
---|---|
0 | NaN |
1 | d |
2 | NaN |
3 | f |
d['A'].str.len()
0 5.0
1 5.0
2 NaN
3 5.0
Name: A, dtype: float64
df = pd.DataFrame(['a_b ', ' d_e ', np.nan, 'f_g '],columns = ['B'])
df['B']
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
df['B'].str.strip()
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
df['B'].str.rstrip()
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
df['B'].str.lstrip()
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
d['A'] .str.partition('_')
0 | 1 | 2 | |
---|---|---|---|
0 | a | _ | b_c |
1 | c | _ | d_e |
2 | NaN | NaN | NaN |
3 | f | _ | g_h |
d['A'].str.rpartition('_')
0 | 1 | 2 | |
---|---|---|---|
0 | a_b | _ | c |
1 | c_d | _ | e |
2 | NaN | NaN | NaN |
3 | f_g | _ | h |
d['A'].str.lower()
0 a_b_c
1 c_d_e
2 NaN
3 f_g_h
Name: A, dtype: object
d['A'].str.upper()
0 A_B_C
1 C_D_E
2 NaN
3 F_G_H
Name: A, dtype: object
d['A'].str.find('d')
0 -1.0
1 2.0
2 NaN
3 -1.0
Name: A, dtype: float64
d['A'].str.rfind('d')
0 -1.0
1 2.0
2 NaN
3 -1.0
Name: A, dtype: float64
d['A'].str.index('_')
0 1.0
1 1.0
2 NaN
3 1.0
Name: A, dtype: float64
d['A'].str.rindex('_')
0 3.0
1 3.0
2 NaN
3 3.0
Name: A, dtype: float64
d['A'].str.capitalize()
0 A_b_c
1 C_d_e
2 NaN
3 F_g_h
Name: A, dtype: object
d['A'].str.capitalize()
0 A_b_c
1 C_d_e
2 NaN
3 F_g_h
Name: A, dtype: object
d['A'].str.isalnum()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isalpha()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isdigit()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isspace()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.islower()
0 True
1 True
2 NaN
3 True
Name: A, dtype: object
d['A'].str.isupper()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.istitle()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isnumeric()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isdecimal()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29