京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分组聚合(group by)顾名思义就是分2步:
groupby()对某列进行分组agg()函数里应用聚合函数计算结果,如sum()、mean()、count()、max()、min()等,用于对每个分组进行聚合计算。import pandas as pd
import numpy as np
import random
df = pd.DataFrame({'A': ['a', 'b', 'a', 'b','a', 'b'],
'B': ['L', 'L', 'M', 'N','M', 'M'],
'C': [107, 177, 139, 3, 52, 38],
'D': [22, 59, 38, 50, 60, 82]})
df
| A | B | C | D | |
|---|---|---|---|---|
| 0 | a | L | 107 | 22 |
| 1 | b | L | 177 | 59 |
| 2 | a | M | 139 | 38 |
| 3 | b | N | 3 | 50 |
| 4 | a | M | 52 | 60 |
| 5 | b | M | 38 | 82 |
单列分组
① 对单列分组后应用sum聚合函数
df.groupby('A').sum()
| C | D | |
|---|---|---|
| A | ||
| a | 298 | 120 |
| b | 218 | 191 |
② 对单列分组后应用单个指定的聚合函数
df.groupby('A').agg({'C': 'min'}).rename(columns={'C': 'C_min'})
| C_min | |
|---|---|
| A | |
| a | 52 |
| b | 3 |
③ 对单列分组后应用多个指定的聚合函数
df.groupby(['A']).agg({'C':'max','D':'min'}).rename(columns={'C':'C_max','D':'D_min'})
| C_max | D_min | |
|---|---|---|
| A | ||
| a | 139 | 22 |
| b | 177 | 50 |
两列分组
① 对多列分组后应用sum聚合函数:
df.groupby(['A', 'B']).sum()
| C | D | ||
|---|---|---|---|
| A | B | ||
| a | L | 107 | 22 |
| M | 191 | 98 | |
| b | L | 177 | 59 |
| M | 38 | 82 | |
| N | 3 | 50 |
② 对两列进行group 后,都应用max聚合函数
df.groupby(['A','B']).agg({'C':'max'}).rename(columns={'C': 'C_max'})
| C_max | ||
|---|---|---|
| A | B | |
| a | L | 107 |
| M | 139 | |
| b | L | 177 |
| M | 38 | |
| N | 3 |
③ 对两列进行分组group 后,分别应用max、min聚合函数
df.groupby(['A','B']).agg({'C':'max','D':'min'}).rename(columns={'C':'C_max','D':'D_min'})
| C_max | D_min | ||
|---|---|---|---|
| A | B | ||
| a | L | 107 | 22 |
| M | 139 | 38 | |
| b | L | 177 | 59 |
| M | 38 | 82 | |
| N | 3 | 50 |
补充1: 应用自定义的聚合函数
df = pd.DataFrame({'A': ['a', 'b', 'a', 'b','a', 'b'],
'B': ['L', 'L', 'M', 'N','M', 'M'],
'C': [107, 177, 139, 3, 52, 38],
'D': [22, 59, 38, 50, 60, 82]})
df
| A | B | C | D | |
|---|---|---|---|---|
| 0 | a | L | 107 | 22 |
| 1 | b | L | 177 | 59 |
| 2 | a | M | 139 | 38 |
| 3 | b | N | 3 | 50 |
| 4 | a | M | 52 | 60 |
| 5 | b | M | 38 | 82 |
# 使用自定义的聚合函数计算每个分组的最大值和最小值
def custom_agg(x):
return x.max() - x.min()
result = df[['B','C']].groupby('B').agg({'C': custom_agg})
result
| C | |
|---|---|
| B | |
| L | 70 |
| M | 101 |
| N | 0 |
补充2: 开窗函数(类似于SQL里面的over partition by):
使用transform函数计算每个分组的均值
# 使用transform函数计算每个分组的均值
df['B_C_std'] = df[['B','C']].groupby('B')['C'].transform('mean')
df
| A | B | C | D | B_C_std | |
|---|---|---|---|---|---|
| 0 | a | L | 107 | 22 | 142.000000 |
| 1 | b | L | 177 | 59 | 142.000000 |
| 2 | a | M | 139 | 38 | 76.333333 |
| 3 | b | N | 3 | 50 | 3.000000 |
| 4 | a | M | 52 | 60 | 76.333333 |
| 5 | b | M | 38 | 82 | 76.333333 |
补充3: 分组聚合拼接字符串 pandas实现类似 group_concat 功能
假设有这样一个数据:
df = pd.DataFrame({
'姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语']
})
df
| 姓名 | 科目 | |
|---|---|---|
| 0 | 张三 | 语文 |
| 1 | 张三 | 数学 |
| 2 | 张三 | 英语 |
| 3 | 李四 | 语文 |
| 4 | 李四 | 数学 |
| 5 | 李四 | 英语 |
补充:按某列分组,将另一列文本拼接合并
按名称分组,把每个人的科目拼接到一个字符串:
# 对整个group对象中的所有列应用join 连接元素
(df.astype(str)# 先将数据全转为字符
.groupby('姓名')# 分组
.agg(lambda x : ','.join(x)))[['科目']]# join 连接元素
| 科目 | |
|---|---|
| 姓名 | |
| 张三 | 语文,数学,英语 |
| 李四 | 语文,数学,英语 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01