京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据重塑,顾名思义就是给数据做各种变形,主要有以下几种:
根据索引(index)、列(column)(values)值), 对原有DataFrame(数据框)进行变形重塑,俗称长表转宽表

import pandas as pd
import numpy as np
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df
| 姓名 | 科目 | 成绩 | |
|---|---|---|---|
| 0 | 张三 | 语文 | 91 |
| 1 | 张三 | 数学 | 80 |
| 2 | 张三 | 英语 | 100 |
| 3 | 李四 | 语文 | 80 |
| 4 | 李四 | 数学 | 100 |
| 5 | 李四 | 英语 | 96 |
长转宽:使用 df.pivot 以姓名为index,以各科目为columns,来统计各科成绩:
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df
| 姓名 | 科目 | 成绩 | |
|---|---|---|---|
| 0 | 张三 | 语文 | 91 |
| 1 | 张三 | 数学 | 80 |
| 2 | 张三 | 英语 | 100 |
| 3 | 李四 | 语文 | 80 |
| 4 | 李四 | 数学 | 100 |
| 5 | 李四 | 英语 | 96 |
df.pivot(index='姓名', columns='科目', values='成绩')
| 科目 | 数学 | 英语 | 语文 |
|---|---|---|---|
| 姓名 | |||
| 张三 | 80 | 100 | 91 |
| 李四 | 100 | 96 | 80 |

df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df1 = pd.pivot(df, index='姓名', columns='科目', values='成绩').reset_index()
df1
| 科目 | 姓名 | 数学 | 英语 | 语文 |
|---|---|---|---|---|
| 0 | 张三 | 80 | 100 | 91 |
| 1 | 李四 | 100 | 96 | 80 |
宽表变长表:使用 pd.melt 以姓名为标识变量的列id_vars,以各科目为value_vars,来统计各科成绩:
df1.melt(id_vars=['姓名'], value_vars=['数学', '英语', '语文'])
| 姓名 | 科目 | value | |
|---|---|---|---|
| 0 | 张三 | 数学 | 80 |
| 1 | 李四 | 数学 | 100 |
| 2 | 张三 | 英语 | 100 |
| 3 | 李四 | 英语 | 96 |
| 4 | 张三 | 语文 | 91 |
| 5 | 李四 | 语文 | 80 |
random.seed(1024)
df = pd.DataFrame(
{'专业': np.repeat(['数学与应用数学', '计算机', '统计学'], 4),
'班级': ['1班','1班','2班','2班']*3,
'科目': ['高数', '线代'] * 6,
'平均分': [random.randint(60,100) for i in range(12)],
'及格人数': [random.randint(30,50) for i in range(12)]})
df
| 专业 | 班级 | 科目 | 平均分 | 及格人数 | |
|---|---|---|---|---|---|
| 0 | 数学与应用数学 | 1班 | 高数 | 61 | 34 |
| 1 | 数学与应用数学 | 1班 | 线代 | 90 | 42 |
| 2 | 数学与应用数学 | 2班 | 高数 | 84 | 33 |
| 3 | 数学与应用数学 | 2班 | 线代 | 80 | 43 |
| 4 | 计算机 | 1班 | 高数 | 93 | 34 |
| 5 | 计算机 | 1班 | 线代 | 66 | 43 |
| 6 | 计算机 | 2班 | 高数 | 88 | 45 |
| 7 | 计算机 | 2班 | 线代 | 92 | 44 |
| 8 | 统计学 | 1班 | 高数 | 83 | 46 |
| 9 | 统计学 | 1班 | 线代 | 83 | 41 |
| 10 | 统计学 | 2班 | 高数 | 84 | 49 |
| 11 | 统计学 | 2班 | 线代 | 66 | 49 |
各个专业对应科目的及格人数和平均分
pd.pivot_table(df, index=['专业','科目'],
values=['及格人数','平均分'],
aggfunc={'及格人数':np.sum,"平均分":np.mean})
| 及格人数 | 平均分 | ||
|---|---|---|---|
| 专业 | 科目 | ||
| 数学与应用数学 | 线代 | 85 | 85.0 |
| 高数 | 67 | 72.5 | |
| 统计学 | 线代 | 90 | 74.5 |
| 高数 | 95 | 83.5 | |
| 计算机 | 线代 | 87 | 79.0 |
| 高数 | 79 | 90.5 |
补充说明:
df.pivot_table()和df.pivot()都是Pandas中用于将长表转换为宽表的方法,但它们在使用方式和功能上有一些区别。
使用方式:
处理重复值:
聚合操作:
总的来说,df.pivot()方法适用于长表中不存在重复值的情况,而df.pivot_table()方法适用于长表中存在重复值的情况,并且可以对重复值进行聚合操作。根据具体的数据结构和分析需求,选择合适的方法来进行转换操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28