京公网安备 11010802034615号
经营许可证编号:京B2-20210330
艾哈迈德·贝斯贝斯,AI工程师//博客作者//跑步者。
这是个人的观察,但我相信你们中的许多人在阅读这篇文章时会有同样的感受。
我是一名数据科学家,我喜欢我的工作,因为我认为它涵盖了各种相互依赖的领域,使它丰富和刺激。然而,我有时不得不与那些不完全理解组织或领域中这个角色的人打交道。坦率地说,这让我和我认识的许多人都有点沮丧。
在你继续阅读之前,我应该提到,我的目的不是阻止任何人对这个角色的渴望。我只是在陈述行业中普遍出现的一些负面方面,以及避免这些负面方面的可能解决方案。
原则上,这没问题。我也不明白其他人是怎么做的。然而,我不明白的是,一些当事人对了解你在帮助他们时做了什么完全缺乏兴趣和好奇心。我不是说他们应该了解神经网络的每一个小算法细节,但至少,他们应该了解你的方法,你解决问题的方法。有时,就好像你被委托做一项没有人关心的痛苦而肮脏的任务。
有些项目经理对你正在做的事情不感兴趣,除非你做完了。我想这些家伙把管理提升到了一个全新的水平。
哦!你是数据科学家?你一定对数字很在行。你为什么不看看我的文件,把数据处理一下呢?我听说你的“蟒蛇”能很快释放出魔力。在这里,去玩我的文件,完成后来看我。
-怎么办?
为了使每个人都在同一页上,一个解决方案是向没有技术背景的团队提供培训和意识。这需要通过内部研讨会、认证或MOOC订阅广泛的技术主题,如机器学习、深度学习或NLP的介绍性讲座。当建立这些领域的知识时,队友会变得积极主动,更多地参与到建立过程中。项目经理也意识到了挑战。
嗯,十年前,当这个领域开始出现时,这个方法非常有效,Hadoop和Spark这个词到处都是。你可以把你知道的所有流行语都堆在一起,希望得到一个大支票(它奏效了!)。
这已经不是2010年了。公司现在密切关注你愿意出售的东西。他们了解市场、竞争对手和挑战。他们几乎彻底扫描了所有东西。他们也知道什么是可行的,什么是不可行的。如果你没有脱颖而出,对你的价值主张和你的数据科学团队能带来的技术专长不够清楚,你最有可能失去这笔交易。
当然,尽管如此,总有一些穿西装的胆子很大的家伙发表这种鼓舞人心的声明:
让我们在这里和那里投入一点数据科学来加强我们的宣传,并让客户支付一大笔钱!
那不是很美吗?
— What to do?
不要表现得好像数据科学家会彻底改变和破坏您的组织。市场开始知道限制是什么。与市场接轨。
我们都知道这种感觉,而且很烂。你在努力工作中失败了,而另一个人展示了你的结果,并拿走了所有的功劳。这在任何地方都很常见,当您在数据科学团队中与业务伙伴协作时,这种情况会发生得更多。
如果你对团队很有价值,你的同事自然应该让你在利益相关者面前发光发热。然后你的声音被听到并参与决策过程。
然而,如果你觉得你被当作一种可互换的资源,或者被放在一边,在阴影下工作,为那些说话的人制作数字,也许是时候重新考虑你的立场了。
— What to do?
构建数据产品时,每个人都很重要。这不应该仅仅是我们告诉自己的一个说法。它必须体现在我们的会议、演示和日常关系中。
嗯,虽然听起来很诱人,但这并不像我们想象的那么容易。仅仅因为我们配备了这些工具并不一定意味着你可以期待立即的可操作的结果。这需要建立关于业务的知识,建立正确的直觉和假设。这需要时间,而且是一个学习的过程。
让我们处理数据并让它说话。
— What to do?
接受这样一个事实,即数据科学家必须花费大量时间了解业务并建立自己的直觉。这需要采访组织中的不同参与者,对数据进行各种分析,进行试验,失败,并获得持续的建设性反馈。
如果您还想为您的数据科学团队提供最好的条件,请确保至少有干净的数据管道,并有清晰的描述。
对于数据科学家的角色仍然存在着强烈的误解。不仅非技术高管,技术领域的其他同事也认为,数据科学家对Spark、Hadoop、SQL、TensorFlow、NLP、AWS、生产级应用程序、docker等都了如指掌。掌握这些工具是很棒的,但是这个过程需要几年的时间和大量的经验。
如果你是一名数据科学家,你申请的公司在一份申请中提到了所有这些技术词汇,请仔细检查该公司。它有可能对自己的数据战略没有明确的愿景,也没有对招聘的角色有明确的定义。
我们需要修复我们的数据问题。让我们雇佣一名数据科学家。
— What to do?
数据科学家并不总是您数据问题的最终解决方案-雇用前要仔细检查。也许你需要的是一个数据分析师或者一个后端开发人员。数据科学家不是精通一切的忍者。
如果你希望你的团队成功地构建你想要构建的任何东西,确保你周围有互补的技能。
在交付一级:
在管理层面:
这是基于来自朋友和同事的讨论和几个反馈的汇编。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16