
数据科学是一个不断扩展的领域。更多的行业继续依赖技术来收集和处理重要的信息,数据科学家的需求很高。然而,找到一份适合你需要的工作有时是一个挑战。在这些情况下,你可以转向自由职业。
自由职业者正迅速成为各种专业人士的热门选择。事实上,LinkedIn正在推出一项新功能,专门帮助自由职业者找到工作。随着这种增长,现在是进入数据科学自由职业的最佳时机。以下步骤将帮助您开始寻找客户机,或者帮助您改进当前的策略。
这个过程的第一步是建立和策划一个强大的在线存在。你需要一个网站,工作列表和LinkedIn页面。
利用你的网站来炫耀你的技能。用你最好的脚印推销你自己。把你的相关工作经验组合起来,并在你成功帮助更多客户时更新它。记住,一个网站必须易于导航,否则人们会点击离开。使联系你和获得他们需要的信息变得容易。
在谷歌上,你可以打开一个谷歌我的商业列表,并连接你的网站和详细信息。这样,一个快速搜索数据科学自由职业者将提出您的业务。考虑你想保持开放的时间,以及潜在客户应该如何联系你。
然后,更新你的LinkedIn并使用新的Marketplaces功能来宣传自己是一名自由职业者。这最后一个行为将帮助您涵盖所有的基础,以吸引企业或个人寻找数据科学家。
数据科学因时而变。新技能开始发挥作用,你必须跟上工作的要求。幸运的是,数据科学是一个广泛的职业--你可以将你为网络安全学到的技能应用到机器学习算法中。
你也可以求助于在线课程来获得你还没有的技能。Lynda有很多选择,可以帮助您开发新技能,如区块链技术中的数据管理。您可以将证书添加到您的网站,以提高您的吸引力和资格,任何数据科学相关的工作。
作为一名自由数据科学家,你应该知道工作的基础知识,统计学,编程,数据可视化,机器和深度学习,以及软件工程。您还需要对大数据有很好的理解。这些技能给了你一个全面的方法来完成所有的自由职业工作。
对数据科学专业人员的大量需求是这份工作的另一个好处。你会发现技术工作是跨行业的必需品,不管他们的重点是什么。例如,旅游和银行业需要数据科学家保护和监控敏感信息。
在银行部门,采用基于数据的方法为客户和机构本身提供了必要的透明度。随着新的金融机构为客户提供更多的金融代理选择--比如加密银行--银行需要确保所有这些控制都有适当的数据保护。这让这个行业在更多的信任中前进。
这一想法适用于所有部门,因为每个机构都需要收集和保护数据。关键是保持你的选择开放。寻找每一个机会,并记住你可以与已建立的企业、初创企业和个人客户合作。
虽然你可以使用互联网来获得认证,但你可以更进一步。其他资源帮助你建立网络和建立你作为自由职业者所需的联系。你应该从这里开始:
从这四个资源开始。您将立即与其他人联系,并对该领域有更好的了解。
一旦你建立了工作联系,你需要解决一些最后的细节。当你与公司或个人合作时,考虑你的工作时间、合同义务和薪酬。
虽然工作时间和任务将由你根据自己的需要来决定,但计算工资可能会稍微复杂一点。与其他自由职业者核实,看看他们的收费,并根据项目和你的技能和经验改变这些数字。
根据Glassdoor的数据,数据科学家的平均年收入约为11.3万美元。如果你把它除以每小时的价格,它会是每小时54美元多一点。但是,如果你有像掌握Scala和Spark这样的技能,你可以增加你的费用。这取决于你的背景。记住,不要低估自己--要知道自己的价值。
通过这五个步骤,您可以开始您的职业生涯作为一个成功的自由数据科学家。每个人的道路看起来都不同,但你应该从建立自己开始。然后,有了一个强大的基础,你就可以接受任何机会来你的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03