
最好的技术人员解决错误的问题注定会失败和沮丧。然而,我们经常看到伟大的Python开发人员和SQL专家创造出出色的技术,但对业务几乎没有什么价值。在某些情况下,情况要糟糕得多。这些解决方案的价值并不值得商榷,而是耗尽了资源,混淆了业务流程。作为数据工程师,我们有责任充分理解我们的解决方案所支持的业务流程。
作为高级数据工程师,我们应该非常了解业务,我们建议如何提高效率和增强工作。一个大胆的声明,但我会舒舒服服地死在这把剑上,和任何不同意的人战斗。当然,打个比喻,因为我没有剑,与其说是斗士,不如说是个情人。关键是,我们需要了解业务,有一个重要的工具可以帮助我们实现这一目标。
在我们开始之前,读一下朱利安·科维齐克的这句精彩的话,它简洁地指出了问题:
“如今,通过理解底层数据和与之相伴随的业务流程来塑造数据似乎不如移动数据的能力重要。”
他在这里说的是,我们太忙于将数据从那里转移到这里,以及我们可以使用的所有酷的工具,我们忘记了我们首先做这一切的原因。数据工程师从多个来源收集原始数据,并创建可供人和机器有效使用的可消耗软件包。对我们的消费者来说,介于两者之间的一切都是一个黑匣子。为什么我们把大部分时间和精力都花在黑匣子上,而不是消耗性的包装上?
愤世嫉俗的观点会说,这是因为黑匣子是有趣的部分。虽然这可能是等式中的一个因素,但我相信我们中的许多人只是不太了解业务流程,无法有效地将时间花在改进可消费软件包上。让我说清楚。更好地理解业务是你的工作和责任。不容易啊。在一个完美的世界里,我们会有很好的文档可以依赖,但是…嗯…你知道的。这就是我们数据工程工具箱中最重要的工具。
问题。就在那儿。问题。很多。好的。坏的。尴尬的那些。所有的问题!这对你来说足够强调了吗?你想从好到好吗?问问题并充分理解您支持的业务流程。我怎么强调都不为过,与一个只关心技术的数据工程师交谈是多么令人沮丧,而我是一名数据工程师。想象一下,你是一名财务分析师、人力资源主管或销售人员。他们需要可消耗的数据包,但可能不理解技术术语。除了他们使用的特定工具之外,他们可能对技术知之甚少。
因此,仅仅提出问题是不够好的。相反,我们需要用企业理解的语言提出正确的问题。忘掉表、数据源和主键吧。这些事情来得更晚,往往是由对更多人的更多问题决定的。相反,询问人们在日常工作中做了什么。询问业务目标是什么。工作如何通过各种系统流动。问,直到你完全理解公司使用的业务流程。然后记录下来。
编写业务文档。当然,做这件事是他们的工作,但你才是需要它的人。创建流程图,包括业务使用的任何工具。包括人们与流程交互的地方。然后和业务一起审查,问更多的问题。您可能会发现没有一个人能理解所有的事情,所以您将与几个人交谈并最终统一业务流程。您编写的文档将成为业务中有价值的工件。砰!你对公司来说是无价之宝。我敢说,你刚成为一名高级数据工程师?
作为数据工程师,理解我们的解决方案支持的业务流程是我们的责任。如果不充分了解这些过程,我们注定会受挫和失败。我们生活的这个不完美的世界通常没有很好的记录,而我们数据工程师是需要弄清楚这一切的人。通过提出大量的问题,我们可以更好地理解我们的解决方案支持的业务流程,这使我们能够不断改进我们工作的影响。所以,开始吧。质疑一切!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04