京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据花开贵阳,为什么能_数据分析师考试
最近两年,地处内陆西南的贵阳市,被越来越频繁的与大数据联系在了一起。2014年4月,贵阳市在中国数据中心产业发展大会评比的“2013-2014年度数据中心优秀单位”中位居榜首。贵阳已建成国内乃至全球最大的数据集聚地之一,为“中国数谷”的构建创造了条件。不少人还惊奇的发现,贵阳上马了全国首个大数据战略重点实验室,成为国内首个全域公共免费Wi-Fi城市,建成国家工信部批准的首个国家级大数据集聚发展示范区。更令人称道的是,贵阳还致力于打通各类政务等公共信息和数据库,正在筹建数据禁毒、数据健康、数据敬老、数据慕课、数据智游(旅游)等块状集聚公共平台。
可以说,贵阳市目前已在大数据建设的各项基础项目和主体项目中,处于国内领先地位。这是如何做到的?贵阳所在的贵州省,即便在西南范围内,经济发展水平也处于跟跑地位,贵阳的资金、技术、人才等资源条件更是逊色于国内其他很多的一二线城市。从地理区位来看,贵阳距离周边其他各省的省会城市及直辖市重庆,都有不近的距离,即便高铁开通,也无法做到一小时内抵达(广州深圳、南京上海、杭州上海、北京天津之间均能实现一小时抵达),这意味着,很难实现省际之间省会城市(直辖市)在科技创新、工业项目、总部经济等领域的良性协同。为什么偏偏是贵阳,可以在大数据领域跻身国内第一方阵?
人们普遍关心的另一个问题是——无论是从国内外城市史的角度,还是从中国改革开放历程出发,都不难找出部分城市借助机遇,在某些产业领域率先崛起,但随后渐趋衰落的案例——贵阳在大数据领域的优势,能否得以持续?能否避免“起了个大早,赶了个晚集”式的尴尬?
解答以上两组命题,可以从《创新驱动力》这本书中找出答案。前面提到了贵阳相比周边一些省会城市、直辖市的相对劣势,但贵阳仍具有显著优势,一是无地震、无风灾、无旱涝;二是电能资源充足;三是气候条件适宜。这三项优势得以转化为驱动科技创新、大数据产业落户发展的助力,得益于贵阳市主动牵手中关村。有意思的是,地处北京海淀区的中关村,尽管已经孕育出类似硅谷模式的科技创新、产学研资合作链条,却面临发展空间不足的劣势。中关村的劣势,可以被贵阳的优势很好弥补,反过来,中关村的优势平移到贵阳,则可以发挥更大威力。
书中介绍指出,贵阳牵手中关村,更多地关注引进中关村的天使投资人、风险投资机制、科技资源、创新模式,并扎实做好服务科技创新的基础性工作,为此搭建起多个高效运转的园区。在笔者看来,贵阳推动本地技术交易平台建设,构建起网络化信息平台、打造体验式应用平台,这是得以让引入的中关村项目、人才、制度成果留得住,充分融入引入地科技创新发展的关键。
一个经济发展原本处于后发地位,科技创新和工业化水平较低的内陆省会城市,能在发力大数据过程中,成功引入资本、企业、项目和人才,与当地切实推动服务创新密不可分。贵阳市2014年列出了权力清单、负面清单、责任清单,优化程序清单,这不仅极大的减少了困扰创新发展、创业的规制负担,而且也使得当地打造的集成化、数字化公共服务平台在一个较为优良的管制理念的基础上上线。
书中第五至八章详细介绍了贵阳综合保税区、高新区、贵阳国家经济技术开发区、贵州双龙航空港经济区的筹建过程、功能设置、政策举措。这四大园区成为强有力驱动贵阳大数据产业发展、智慧城市建设、打造“中国数谷”的强劲四核。
贵阳的大数据,有别于国内其他一些城市的政策实践和产业运行。贵阳提出并实践的“块数据”,强调的是包括公共信息在内的各类信息的数聚,并因此实现多维无限的重组、裂变、升级。贵阳市也因此成为国内首个政府数据开放示范城市,上线国内首个大数据交易所,这些都使得贵阳一定程度上率先抢占了大数据战略的制高点——如果当地继续深入现有的改革、创新政策路径,深化改革,保持足够的开放姿态、学习精神和危机意识,破除束缚创新驱动、信息开放的体制机制和政策障碍,不因地方党政班子的换届调整而走回头路、折腾发展思路,就可以认为,至少在未来一些年内,贵阳仍将持续保持信息化、智慧城市、大数据产业等多方面发展优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14