京公网安备 11010802034615号
经营许可证编号:京B2-20210330
P2P欺诈乱象不止 大数据防控能否作为_数据分析师考试
时下,无论是传统行业还是新兴业态,都力争在“互联网+”这股浪潮中找到自己的航向。互联网金融作为飞驰在前列的弄潮儿,风生水起的同时,风险也在逐渐累积,在传统风控的基础上,利用大数据进行风险评级和风险控制已成为业内的共同趋势。
近日,多家P2P平台宣布接入大数据反欺诈服务供应商同盾科技的SAAS反欺诈数据库,一时间,大数据反欺诈成为P2P平台风控水平新的提升点。据相关人士介绍,大数据反欺诈的实质是通过对大数据的采集和分析,找出欺诈者留下的蛛丝马迹,从而预防欺诈行为的发生。其现实意义在于提升坏人的欺诈成本,在欺诈行为发生之前就将其制止,进而净化诚信体系。
业内专家表示,互联网的虚拟性,让线上造假的成本和难度远远低于线下。随着诈骗团伙专业性的增强,越来越多的高科技被运用到线上进行诈骗,更加大了P2P平台甄别用户信息的难度,提高平台对网络欺诈防范能力已经刻不容缓。
“虚假借款人是P2P平台主要风险主体之一,而网络反欺诈简单说来就是为了过滤掉这些虚假借款人。这个群体的突出特点就是同时在多个借款平台上发布借款申请,通过提供虚假信息进行诈骗。”一位受访的业内人士说。
据了解,目前已有多家P2P平台引入了反欺诈技术,这在我国征信体系尚不完善的互联网金融环境中具有重要意义。以P2P平台邦帮堂为例,引入大数据反欺诈模型之后,邦帮堂风控系统将与同盾SAAS反欺诈数据库直接进行对接,同盾科技提供丰富的反欺诈资源,帮助邦帮堂在信用评估初期有效地判断借款申请是否属于诈骗,过滤掉不安全信息,帮助其提高审贷效率,大幅降低平台前期的硬件和实施成本。
邦帮堂副总裁王秀萍认为,互联网金融蓬勃兴起的同时,通过向P2P平台提供虚假信息,骗取钱财的金融诈骗犯罪也日益猖獗,给平台和投资人造成巨大经济损失。随着互联网金融市场规模的增长,互联网金融诈骗必将有增无减。所以通过内外兼修,加强平台风控系统建设,提高自身风控实力,是每一个负责任的P2P平台都必须用心去做的“功课”。需要注意的是,任何单一技术都是辅助工具,P2P平台的风控建设还是需要形成严密的体系,尽力朝着“无缝隙”方向努力。
除了P2P领域,电商、银行、支付等行业同样需要反诈骗。业内人士认为,未来,反欺诈领域或将实现跨行业联防联控。可以通过整合包含互联网金融、电商、银行、支付等众多行业黑名单数据,配合行业领先的数据与行为收集技术,经过多样化的机器学习模型、大数据关联分析和指标计算,以云服务的方式为各行业提供网络反欺诈保护,从而建立适用于全局的关联欺诈信息库,提供更准确更全面的反欺诈服务。
P2P网贷行业发展至今,各平台发展良莠不齐,风控能力也长短不一。随着大资本大集团的纷纷介入,以及大数据的深度融合,行业竞争将不断加剧,洗牌速度和程度也将更快,更彻底。在风控安全成为互联网金融生命线的当下,谁拥有了“最强风控”,谁就等于拥有了抵御行业竞争与洗牌的最强后盾。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14