京公网安备 11010802034615号
经营许可证编号:京B2-20210330
P2P欺诈乱象不止 大数据防控能否作为_数据分析师考试
时下,无论是传统行业还是新兴业态,都力争在“互联网+”这股浪潮中找到自己的航向。互联网金融作为飞驰在前列的弄潮儿,风生水起的同时,风险也在逐渐累积,在传统风控的基础上,利用大数据进行风险评级和风险控制已成为业内的共同趋势。
近日,多家P2P平台宣布接入大数据反欺诈服务供应商同盾科技的SAAS反欺诈数据库,一时间,大数据反欺诈成为P2P平台风控水平新的提升点。据相关人士介绍,大数据反欺诈的实质是通过对大数据的采集和分析,找出欺诈者留下的蛛丝马迹,从而预防欺诈行为的发生。其现实意义在于提升坏人的欺诈成本,在欺诈行为发生之前就将其制止,进而净化诚信体系。
业内专家表示,互联网的虚拟性,让线上造假的成本和难度远远低于线下。随着诈骗团伙专业性的增强,越来越多的高科技被运用到线上进行诈骗,更加大了P2P平台甄别用户信息的难度,提高平台对网络欺诈防范能力已经刻不容缓。
“虚假借款人是P2P平台主要风险主体之一,而网络反欺诈简单说来就是为了过滤掉这些虚假借款人。这个群体的突出特点就是同时在多个借款平台上发布借款申请,通过提供虚假信息进行诈骗。”一位受访的业内人士说。
据了解,目前已有多家P2P平台引入了反欺诈技术,这在我国征信体系尚不完善的互联网金融环境中具有重要意义。以P2P平台邦帮堂为例,引入大数据反欺诈模型之后,邦帮堂风控系统将与同盾SAAS反欺诈数据库直接进行对接,同盾科技提供丰富的反欺诈资源,帮助邦帮堂在信用评估初期有效地判断借款申请是否属于诈骗,过滤掉不安全信息,帮助其提高审贷效率,大幅降低平台前期的硬件和实施成本。
邦帮堂副总裁王秀萍认为,互联网金融蓬勃兴起的同时,通过向P2P平台提供虚假信息,骗取钱财的金融诈骗犯罪也日益猖獗,给平台和投资人造成巨大经济损失。随着互联网金融市场规模的增长,互联网金融诈骗必将有增无减。所以通过内外兼修,加强平台风控系统建设,提高自身风控实力,是每一个负责任的P2P平台都必须用心去做的“功课”。需要注意的是,任何单一技术都是辅助工具,P2P平台的风控建设还是需要形成严密的体系,尽力朝着“无缝隙”方向努力。
除了P2P领域,电商、银行、支付等行业同样需要反诈骗。业内人士认为,未来,反欺诈领域或将实现跨行业联防联控。可以通过整合包含互联网金融、电商、银行、支付等众多行业黑名单数据,配合行业领先的数据与行为收集技术,经过多样化的机器学习模型、大数据关联分析和指标计算,以云服务的方式为各行业提供网络反欺诈保护,从而建立适用于全局的关联欺诈信息库,提供更准确更全面的反欺诈服务。
P2P网贷行业发展至今,各平台发展良莠不齐,风控能力也长短不一。随着大资本大集团的纷纷介入,以及大数据的深度融合,行业竞争将不断加剧,洗牌速度和程度也将更快,更彻底。在风控安全成为互联网金融生命线的当下,谁拥有了“最强风控”,谁就等于拥有了抵御行业竞争与洗牌的最强后盾。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29