
原来在线广告公司都是这样使用Spark处理流数据的
在Hadoop集群上部署Spark处理引擎,每天处理14TB的交易数据,这就是在线广告平台Altitude Digital最近的实践,它主要追踪用户的社交媒体数据。
AltitudeDigital首席技术官Manny Puentes透露,Spark部署会在今年四月中旬上线,公司为了成功在Hadoop系统中应用Spark Streaming模型,特地将计算节点从30扩展到50。
目前,Altitude Digital使用的是Hive数据仓库软件,这是Apache另一个开源技术,用于查询存储在集群中的数据,基于MapR Hadoop发行版。Puentes表示:“Hive是长时间运行的报表,一旦崩溃,要返回TB级别数据就得花费几个小时的时间。”在测试中,Spark Streaming查询速度是Hive的4到20倍,处理的数据集的规模和复杂度会对查询速度产生影响。
查询速度的提高对公司来讲意义重大,因为公司的分析应用程序,比如通过视频广告浏览数据优化广告位置,经常需要运行查询、等待结果、根据结果优化查询,然后再次运行。如果实践中能获得测试的性能,分析团队可能在一天之内得到复杂查询的答案,不需要再花上四五天的时间了。Puentes介绍到:“这对我们的业务来讲是很有意义的。”
流数据的多种应用方式
AltitudeDigital正在尝试集成来自多种不同的数据源的数据流,通过一定的算法,基于浏览cookie了解用户的行为。公司的另一个目标是给线上广告商更快的仪表盘访问。Puentes表示:“我们也希望能够实时反馈数据洞察力给广告商。”
Spark还只是Altitude Digital应用的技术之一,公司每天通过Spark Streaming处理交易数据的同时,也在使用Concurrent提供的开源Cascading软件来运行MapReduce批处理任务。Spark也支持批处理,而且生成处理速度是MapReduce的一百倍。但Puentes表示,他还是希望使用MapReduce容错技术确保任务完成。
Sharethrough是另一个采用了Spark Streaming的在线广告公司,它用来支持运行在AWS上的基于Cloudera的Hadoop集群。Sharethrough在2013年中期开始使用Databricks公司的Spark云部署,目前通过流处理模块每天运行500GB的互联网点击和广告可视数据。
Spark系统搭载机器学习应用程序,分析原生广告的效果。Sharethrough系统集成副总裁Rob Slifka表示,Hadoop集群部署两年以后,很明显,批导向的系统不能满足企业实时分析的需求。广告商和发行商不得不使用几小时以前的数据决定在哪里做广告,这就给广告优化带来了挑战。Slifka表示,因为Sharethrough平台支持的广告的本质决定的,这样做会很复杂。头条和触屏文本可以形成不同的组合。
数据流和点击率
这种头条-文本的方式更有效。在一次Sharethrough;进行的测试中,内部广告点击率从不足1%增长到7%,这在广告界是很大的进步。之所以采用Spark Streaming就是考虑到它能够快速识别那版广告最有效。Slifka表示:“如果你有十种组合,其中五种都不好,你一定想要快速地了解到哪五种不好。”
多亏了数据流技术,公司才能够用不同的网站用户测试不同的广告,然后快速分析结果,识别哪个广告最有效。Slifka表示:“我们从来不会选择一个单独的赢家,通过Spark Streaming,我们会采用一对组合,使其成为最好的广告。”
Russell Cardullo领导了Spark技术部署,他表示,流处理让性能检测更重要,也更有挑战性。“你需要认识到,这是要7*24小时不间断运行的。数据无时无刻不在产生,你需要及时掌握数据情况,而不是等发生问题了再去解决。”
他补充道,公司运行Spark Streaming,到目前只遇到一个处理问题,而且该问题不是由软件本身引发的,而是公司使用的为Spark提供数据的亚马逊Kinesis和RabbitMQ技术引发的。
Gartner分析师Nick Heudecker和McKnight咨询公司总裁William McKnight也指出了企业在融合大数据和流处理技术时面临的其他挑战。包括构建高可用的技术架构以应对数据处理工作负载,同时能够满足公司分析和业务处理的需求,使其能够利用流数据。Heudecker表示:“如果只加速业务流程的5%,其他95%都没有变,那就没有什么意义了。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11