京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅析大数据及企业策略_数据分析师考试
现在很多人都在谈论大数据,初创公司也在探索大数据,深度学习也是科学研究的一个热点。显而易见我们正面临着一场信息革命。数据正以惊人的速度增长,过去两年全世界共产生了2 ZB的数据(1 ZB=十亿 TB)。这些数据主要的来源是服务器日志的大量使用、物联网、各种传感器、社交媒体以及电子邮件。
大数据要多大?
如果你觉得你的10GB硬盘就叫大数据了,我只能说呵呵。100GB的服务器数据库也只能叫“小数据”。就算是11TB的分布式数据库也算不上是大数据。100TB的大规模并行处理系统勉强称得上是大数据。现在数据规模在1000TB也就是1PB(Petabyte)左右的系统可以称得上是大数据系统,但这还不够,我们预计未来的大数据平台规模将以EB计(1 Exabyte=100万TB)。
大数据所带来的新技术和观念的转变对商业活动产生了很大的影响。
那么大数据究竟为我们带来了哪些新技术呢?
1. 数据量
大数据依赖横向扩展的架构来提高负载而非强化服务器硬件的纵向扩展。横向扩展的意思是我们向网络中加入更多的服务器节点达到均衡计算量的目的。相比于纵向扩展,横向扩展更经济,也可以获得更好的性能。
2. 数据多样性
企业环境中80%的数据是都是非结构化的。我们的日常生活其实也是在处理抽象的非结构化数据,保守的处理方式是处理部分数据或是改变数据的结构,有了大数据的帮助,你可以处理原始数据而不必担心数据在处理的过程中丢失。
3. 数据处理速度
采用大数据的处理方式不需要进行抽样因此速度上可以得到提升,无需抽样也意味着简化的数据处理模型,因此精确度和可靠性也得到了保证。当我们使用有限资源处理过量数据时,我们需要对数据进行抽样因此精确度会降低。反之,如果我们要提高精确性但能够处理的数据又有限时我们则会得出更复杂的模型,这将会导致可靠性的降低。
更多的数据胜过聪明的算法——谷歌
大数据也带来了观念的转变:数据驱动的科技需要数据科学。应用大数据的企业需要能够有效利用大数据的人员,也就是数据科学家来帮助企业从数据中获得有价值的信息,通常他们所使用的方式是机器学习和预测分析。
这里需要注意数据科学家与数据分析师的不同,数据分析师通常有着计算机或商业背景,所使用的工具如SAS、SPSS、Excel、R、SQL和数据库。数据科学家则通常来自数学物理或自然科学等学科,掌握着更高级的统计和机器学习等技能。大数据初创公司应懂得根据产品的技术特性和用户需求来寻找合适的数据科学家。
越来越多的初创公司在大数据领域寻找发展的机会或是提升运营的效率,这说明企业有着向数据驱动的商业模式转型的需要。
所以,大数据时代的企业应该采取以下的公式:
新技术+新观念+商业转型=大数据策略。
大数据时代所采用的策略是初创公司进行商业转型时所应考虑的一个问题。
如果你也在考虑着商业转型,你需要考虑招聘一些数据方面的专才,比如大数据架构师、大数据工程师、数据科学家甚至首席数据官来有效利用大数据,很多大公司可能明年就会设立首席数据官这个职位。
看来大数据和数据科学家即将走向台前引领商业的走向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27