京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助力京津冀协同发展_数据分析师考试
2015年6月24日下午,大数据助力京津冀协同发展高峰论坛在北京文津国际酒店五层阳光厅举行。本次论坛由京津·高村科技创新园、清华大学数据科学研究院主办,清华大数据产业联合会承办,北京诺亚星云科技有限责任公司协办。天津市武清开发区总公司副总经理李富国、京津高村科技创新园副总经理杜瀛涛、副总经理孙浩、中国科学院科技政策与管理科学研究所研究员王铮、清华大学数据科学研究院执行副院长韩亦舜和大数据产业界相关代表等出席本次活动。本次高峰论坛由壳牌中国零售CIO徐斌主持。
“今天我们谈论的京津冀协同发展是一个大话题,我们的目标,不是完成疏散人口、挪出产业等单一任务,而是真正把京津冀这三地打造成适合人居的地方。这个目标只有用大数据的思想方法进行全面思考,才能够真正实现。比较北京和天津,武清算小的,但是已经可以明显感觉到这里具备了培养创新创业的土壤。世界这么大,创业可以到武清去看看;大城市发展的机会这么少,不妨到武清去找找。”清华大学数据科学研究院执行副院长韩亦舜精彩的致辞拉开了大数据助力京津冀协同发展高峰论坛的序幕。紧接着,武清区开发公司副总经理李富国在致辞中强调:“武清过去一直是一个农业县。配合着京津冀协同发展,武清渐渐形成电商、生物医药、高端制造、大数据等几大产业。京津冀协同发展,非首都功能开始向武清疏解。我们致力于打造一个良好的工作环境、生活环境给创业者们。希望年轻人、创业者到武清落地。”
壳牌中国零售CIO徐斌首先在演讲中表示,“互联网+”意味着更多的人利用移动互联网作为生活的组成部分。这对于传统企业发出了挑战:如何利用互联网技术重构核心竞争力。大数据就是所有技术中间最为核心的竞争力。互联网技术可以帮助传统企业更好地转型,但是技术只是工具,重要的是传统企业可以拥抱互联网思维:平等、开放、协作、共享。今天我们讨论的京津冀三地协同发展,也需要这样的思维。随后,银联智策副总经理呼延如生介绍了银联智策和清华大学数据科学研究院经济金融数据研究中心共同研发的“京津冀经济发展系列指数”,并解释道:“这些指数是基于银联卡交易数据计算出来的,最真实的反映了市场上的交易情况,从衣、食、住、行、用的百姓生活以及地产、金融、物流等十多个产业发展多维度全面分析,以支撑京津冀地区产业战略发展决策”。清华大数据产业联合会副秘书长邱冬晓通过演讲《大数据@京津冀》表达了他对于如何在京津冀和武清区落实大数据战略的看法,他说:“首先,要以大数据产业为核心。第二,要以生态链为抓手,从服务业入手,实现生态的双赢。第三,大力发展创新创业为引擎”。
中国科学院科技政策与管理科学研究所研究院王铮在谈到京津冀协同发展中的机遇与挑战时表示:“京津冀地区总面积21.6万平方公里,差不多等于英国的面积。英国有那么多产业、那么多发展,我们中国京津冀也足以放下这么多产业。协调京津翼发展需要金融业、研发业这两个枢纽。大数据挖掘、大数据分析就是研发产业。大数据是靠数据挖掘来支持的,所以我们武清要发展,不能只依靠大数据企业,还要把相应的数据挖掘、产业分支发展起来,而数据发展依赖于人才。”
随后,清华大学数据科学研究院执行副院长韩亦舜、天津觉明科技有限公司副总经理孟庆凯、京津高村科技创新园副总经理杜瀛涛、太平洋电信客服部产品经理范利军、百融金服市场总监张毅、创业魔法学院CEO陆伟,就“大数据助力京津冀协同发展”问题进行了圆桌讨论,进一步探讨了武清高村科技创新园在京津冀协同发展和产业转型升级中的优劣势和发展方向。
在最后的大数据企业SHOW环节中,山东蚁巡网络科技有限公司、数聚变、京东智能云、北京爱康泰科技有限责任公司、屏芯科技、海思力科技有限公司、找地儿、北京华康联创医疗有限公司、小象在线教育、易宝天创数据服务有限公司等10家大数据创新创业企业代表分别上台介绍了各自公司的大数据应用场景,活动圆满结束。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28