
大数据时代 运营商如何掌握_数据分析师考试
据IDC预测,从2005年到2020年,全球数据量将从130EB增长到40ZB。大数据时代已经到来,如何更好地发挥数据资产的价值,对电信运营商来说是一个崭新的课题。
运营商大数据的价值主要体现在运营商内部应用和外部商业化。通过内部应用可以提高运营商的科学决策水平,实现决策从主观判断和经验判断为主转向数据驱动的科学决策;通过外部应用提升大数据价值,拓展运营商互联网经营思维,开创运营商收入蓝海,拓宽延展产业链,支撑决策,服务社会,惠及民生。
大数据的六大典型应用案例
公共交通:运营商利用成熟的GPS定位技术和高速的无线传输网络,为公交车、出租车公司提供车辆调度和管理服务,提高车辆运营效率和大众人群使用公共车辆的满意度。通过遍布全市的公交车和出租车行驶数据,分析挖掘形成整个城市的路面交通“实时路况”,为公共交通治理提供可靠的决策依据。通过公交车的固定路线行驶时间分析,帮助公共交通部门优化公交线路,合理配置公交车辆的投放数量,从而满足人民群众的公交出行需求。
公共教育:在幼儿教育方面,运营商利用视频传输、云服务分享能够实现幼儿、家长、老师三位一体的信息化服务。随着幼教信息化的普及和推广,借助大数据挖掘和分析,将不同年龄段的幼儿特征和偏好进行提炼,能够为教育局和相关教育机构提供有力参考。在中小学教育方面,运营商通过电子黑板、电子书包等形式,将丰富的教育资源通过云服务的方式传递到教育末梢。同时,借助大数据挖掘和分析,将教育资源的使用率进行评估,从而得出相应的推广范本,为教育机构遴选教材、试点新的教育手段提供参考。
医疗卫生:运营商利用遍布全国、通达乡镇的通信网络,将社区医院、乡村诊所这样的基层医疗服务机构连成网络,利用视频通信、云服务、传感设备等先进技术实现远程病情诊断、远程医疗咨询、共享病历等服务。利用大数据挖掘和分析为流行病防控、易感人群分析、季节多发性疾病预测提供有力的数据支持。
地理信息的商业价值:随着中国汽车市场的繁荣,“实时路况信息”不仅对公共交通治理有益,对普通的驾驶人员也有极高的参考价值。图商(高德地图、百度地图等)在提供免费地图导航软件的同时,对“实时路况”收取增值服务费。对于运营商而言,大数据挖掘分析结果,不仅可以为图商所用,还可以为保险公司售卖车险所用。
互联网金融带来的商业机会:越来越多的人使用“手机支付”,可通过分析此类用户的ARPU(月通信费)以及年龄结构、知识结构为企业细分目标市场。多数银行普遍采用的“信用卡移动受理”服务,是将银行的信用卡开卡业务移植到平板 电脑上,方便银行业务人员随时随地向客户推荐业务、受理业务。运营商利用自身在通信网络和用户资源方面的市场优势,与医疗器械设备厂商及集成商建立长期的合作关系,捆绑业务、互惠互利,形成电信行业在医疗卫生行业的大数据应用,达到双赢共赢。
特殊人群服务:针对残障人士,运营商提供定制化的通信套餐,让他们足不出户也能享受高科技带来的信息盛宴。同时,结合位置定位、视频传输等通信技术,借助大数据挖掘和分析,为特殊人群服务,提供位置分布、使用偏好、消费能力的数据参考。
通过提供末梢消费者的行为分析和结合地理信息的数据分布,从而衍生出形式多样的商务模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09