京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你真的适合在数据科学领域工作吗_数据分析师考试
目前数据科学家或相关角色(如数据管理,统计师,数据分析师等)成为最抢手的职业之一。针对这一跨行业的趋势,一些顶尖大学已经开始致力于培养数据科学家。---cda数据分析师报名
在更多的机遇、薪酬、知名度以及商业领袖们对它重视的诱惑下,许多人开始朝着数据科学家的职业努力,但他们并没有深入地思考这个职位每天所需要承担的责任、需要的态度、在技术和商业技能上的平衡的能力。
对于有志成为数据科学家这个角色的人,这些能够挑战自我和职业抱负的人,我们希望能勾画出一个清晰的图像来说明这些人的特质。我最近同一个有着25年以上行业经验的人Paco Nathan聊起这个问题,他的坦诚的回应让我对这个问题的认识清楚了不少。
Anmol Rajpurohit: 数据科学家被称为第二十一世纪最性感的工作。你同意吗?你会给致力于从事数据科学的人们什么样的建议呢?
Paco Nathan:我不同意。没有多少人具备数据科学家这个角色所需要的知识广度,也没有多少人具备掌握这些技能必备的耐心和欲望。
先做一个自我测试吧
1、准备一个未知的数据集的分析和可视化,数据需求者们将看到你的成果后问一些关键问题,但你要准备好你满怀信心得出的结果受到一些量化的论证。
2、在25个字以内形容出损失函数(loss function)和(regularization term)正则化项,用几个例子做比较/对比,并展示如何为建模说明(model transparency)、模型预测能力和资源需求构建一系列的权衡。
3、在行政机关工作人员会议上提出一个关于解雇排名靠后的人的企业重整建议。
4、访问34个对你的项目有敌视态度的不同部门,梳理出他们一直不愿意提供的元数据资料。
5、构建、测试和部署一个APP,可以提供实时的SLAs,同时可以有效地跨越1000多节点集群。
6、在没有他人帮助的情况下,解决一个至少有200字节长的会出现间歇性错误的代码问题。
7、利用集成方法,提升你正在做一个预测模型的效果。
8、在最后期限日之前,和来自34个和你工作毫不相关的领域的人们一起完成编程项目。
如果你不喜欢上面任何一项工作,那么我建议你不要把“数据科学家”当成你的职业。
数据科学家这个“性感”的角色是大约在2012年由DJ Patil, Hilary Mason等人提出的,然而不是每个人都能分到这个40亿美元产业的一杯羹。
2012年的状况和现在已经有很大的区别,现在在数据科学领域工作意味着:
1、在待开发的领域里有一些创新的机会,但不是经常会有。
2、大多数现有的项目是有风险的。
3、必须对一些权威提出挑战(这不好玩,但是是这个角色的精髓)。
DJ和其他人之前所做的,大多数同数据相关的问题是社会或者组织(例如,数据孤岛,缺乏元数据,矩阵组织内讧等)或者是组织里对这个问题已经有了明确的回答。
我有一种预感,在电子商务领域已经有很多有趣的工作出现,优秀的人们将继续保持极高的价值,但是工作将向硅谷外转移,或者是其他行业的人们将来这里进行学习、合作、交易等等。
例如Monsanto(一家位于美国密苏里州的巨型跨国农业生物技术公司),他们在旧金山成立了一个公司,其实他们可以投资更多的钱在拥有更有利条件的公司上,正如其他风险投资(VC)所做的。然而,该地区的风险投资人(VC)却忽略了相关数据在企业的重要作用——除了特斯拉(Khosla)。在过去的几个月中,他们已经收购了:Climate Corp, Solum等等,我期待着这种趋势的发展。
(Climate Corp 是一家意外天气保险公司,为美国的农民提供天气意外保险。Solum是一家农业领域的科技创业公司,它们的测量系统能够实现更高效、更精准的农产品抽样分析。)
从我的角度来看,数据最大的问题还没有出现,它应该解决真正的问题,例如食品供应,干旱/洪水,能源安全,医疗保健,电信,交通运输减少对石油的依赖,更智能的生产,森林砍伐监测,海洋分析等等。
此外,IT预算仍然限制了数据的洞察力。太多的预算流向了“数据工程“人员,太多的预算往往被指定用于已经清理的数据。另外,我发现,在SV中“产品管理”的概念同有效利用数据的概念是对立的,在许多情况下,产品管理会阻碍公司数据的使用。cda数据分析师考试
因此,我们的价值一般会体现在以下几个方面:
1、编写代码来准备数据。
2、用自动化流程来提高工程的性能和模型比赛。
3、对权威用数据进行挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12