
大数据风控的核心是打破界限_数据分析师考试
当下,人们的生活工作都依赖于各种各样的信息系统,可以说,互联网和信息系统成了人们的基本生活设施。所以,“互联网+”战略的提出仿佛是一件瓜熟蒂落的事情。
在“互联网+”这个巨大的战略中,互联网金融是一个相当重要的体现。在传统的业态当中,金融是万业之首,在互联网生态环境下,互联网金融依旧是核心。只是,互联网金融的风生水起也伴随着P2P平台风险的不断暴露。
好在技术方面已然足够,我们有了大数据、云计算。业内人士普遍认为,征信,即第三方采集记录信用信息,将成为连接人与服务的重要一环,让有信用的人享受到更便捷的生活服务,获得更优惠的金融服务。而大数据风控可以显著降低金融机构的风控成本。
风险控制的核心就是金融信息,而大数据加云计算可以使分析时所使用的信息接近于原始信息的全貌,这是最重要的突破。也许正是因此,马云甚至将大数据跟石油相提并论,令人在“倒吸一口凉气”的同时,又有几分意料之中的感慨。从这个意义上说,在互联网时代,风险控制应该是变得比以前更加容易了。
首先,征信信息的来源更加丰富化,如金融信用信息、法院信息、税务信息等,甚至人们的日常生活中的所有跟商业扯得上关系的行为都可以被方便地记录下来,比如你交个电费,买个手表,甚至看个电影,在网络生态当中都会留下痕迹。这就使得在控制风险的过程当中,能够用来分析的信息更接近于真实的原貌,而不是某一类型信息当中的某几个样本。
其次,这些行为都可以方便地量化,也就是转化为数据信息。而最重要的是,这些数据信息都可以方便地被分析。因此,不夸张地说,大数据其实就是风险控制的最佳手段。
既然将大数据作为控制风险的最佳手段是源于其信息的全面性和云端化,那么,全面的信息就需要遍布人们生活方方面面的数据收集端,比如智能家电或者可穿戴设备,而云端化的分析就需要大型的服务平台。
说白了,硬件软件缺一不可。然而,再牛的互联网公司也终究不是全能王,难以“软硬兼备”。好在,互联网时代最不难办的事就是合作。但是,面对重要性堪比石油的大数据,小伙伴们真能一拍即合、愉快玩耍吗?真能毫无芥蒂地打破各自为战的界限吗?
用户数据意味着未来的市场,小米、阿里、京东、百度[微博]都想建设各自的云计算,这些数据如果放到各自的云端就是互联网公司未来最大的财富,但其他公司难道就甘心将自己收集来的数据拱手相让、然后将来自己需要使用时说不定还要付费?
大数据风控也面临类似的问题,不可能每个企业都自己来做全套工作。
有业内人士认为,现在的信贷行业已经进入了强者恒强、弱者恒弱的时代,因为大的银行在信息化建设方面已经投入了巨额成本,构建了很强大的数据收集、数据处理、反欺诈的决策引擎,大幅度地提高了风控效率,降低了风控成本,可以规避大量的欺诈风险。而小信贷机构的笔均处理成本高于大机构,风险承受能力也低于大机构。
所以,互联网金融要进一步健康发展,就必须有统一的大数据风控平台来进行征信工作。只有这样,中小金融机构的风控成本才能被明显降低,让更多有需求的人享受到金融服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02