
教你如何实现大数据最大价值化_数据分析师考试
近年来,大数据技术以各种不同的方式影响着我们的生活。通过对大量数据加以分析,政府、企业和学者等可以找到有价值的东西,从而提升我们的生活水平,改善我们的生活和工作方式。越来越多的企业利用大数据分析工具找到发展趋势和适合企业发展的方法,从而为合伙人带来利益。
如果找不到适宜的分析工具,那么大数据的管理和分析就非常浪费时间。这里提供几种提高大数据分析价值的方法:
1. 数据融合
成功的大数据分析可以使用户应对工作中的困难,例如发现业务计划和工作中的缺陷和失误。它甚至可以将新的细分市场进行拆分,企业可以提供新的产品和服务。要想做到这些,就需要从各种资源得来的数据中抓住重点从而做出重要决策。
在数据分析中,时间至关重要。很多企业领导者和决策制定者需要实时的信息来快速做出决定。但是据估算,大约80%的时间都花在了准备和整理数据上。这样一来真正的分析工作只占20%。
因此高效的处理工作非常重要,例如数据分析的提取、转换和加载过程(ETL)。我们认为,2015年ETL处理手段将被更多企业加以利用,这是一种更简洁的数据准备过程,同时不需要过多的IT技术。
一个好的ETL工具可以将从多个来源获取的数据融合在一起,也包括公共数据。它让用户的注意力集中到一个源头,获得相关性更高的信息,提高工作效率。同时可以确保用户的信息来源是唯一的,降低错误沟通的风险。
据统计,数据量每2-3年时间就会成倍增长,这些数据蕴含着巨大的商业价值,而企业所关注的通常只占总数据量的2%-4%左右。因此,企业仍然没有最大化地利用已存在的数据资源,以致于浪费了更多的时间和资金,也失去制定关键商业决策的最佳时机。
于是,企业如何通过各种技术手段,并把数据转换为信息、知识,已经成了提高其核心竞争力的主要瓶颈。而ETL则是主要的一个技术手段。目前,ETL工具的典型代表有:Informatica、Datastage、OWB、微软DTS、Beeload、Kettle……
2. 沟通无障碍
就像之前说过的,大数据分析工具可以帮助企业解决商业难题。从业人员也许能很好的理解这些问题,但IT人员却不能完全理解,这样就不能提供和专业需求相匹配的分析报告。再加上沟通不顺畅,领导层就无法及时得到有用信息,也就无法快速做出决策。
如果技术人员能够使用这种自助服务分析工具,就能够找到问题所在并做出可以弥补漏洞的决定。此外,他们还可以将数据同其他开放信息结合在一起,挖掘细分市场。企业还可以共享IT资源来发掘更多的数据信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10