京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅析大数据发展的“四重点 七原则”_数据分析师考试
当这世界上累积的数据量越来越庞大,各企业制订商业策略所纳入考量的数据也跟着大幅增加,这时候如何减少将数据(Data)转换成资讯(Information)的时间变得尤其重要。
采用记忆体内运算技术减少原始数据的移动,仅搬移运算后的结果,加快处理的速度,并且透过压缩技术减 少数据量,能够有效提升数据库效能,应付企业对数据运算量及速度日益升高的要求,也使得企业得到的资讯更即时、能更快地回应各种市场需求及回馈,甚至开发 出全新市场、开创出其独一无二的价值。那未来大数据时代发展的重点将是一个永恒的话题。
万物联网的时代
在物联网概念起飞的这个时代,越来越多行动装置、智慧型居家装置被市场接受,进入到我们的生活中,根据预测,智慧型装置的数量将会从现在到2020年将从130亿成长到500亿。
可以预期的是更多种类型的数据将以更多形式被感测、收集起来,而且这些大量且即时性的感测数据属于非结构化数据,也就是从文本分析到未经处理的文字、声音与影片导出的数据,如何储存处理及分析成为现在十分重要的课题,可能从中挖掘出未知的趋势并带给人类生活 重大的改变。
大数据上云端
如果说大数据是现在最夯的科技潮字,那上一个最红的则是云端运算。从2006年被提出后,云端便广为科技业所使用,各企业更是积极提出各种云端服务。
大数据与云端技术可以说是相辅相成,大数据大大的推动了云端服务,而云端服务的普遍也使得数据量攀升。2014年全世界平均每天产生23TB的 数据,大约是2012年的920倍,以这种情况来看,云端服务在大数据时代相当于“公共设施”般不可或缺,不但用来储存各式各样的数据,还利用云端运算来 建构基于大数据的应用程式和API,建立模型预测未来的事件。
人才很重要,平台跟工具更重要
可以预期的是更多种类型的数据将以更多形式被感测、收集起来,而且这些大量且即时性的感测数据(SensorDrivenData)属于非结构 化数据,也就是从文本分析到未经处理的文字、声音与影片导出的数据,如何储存处理及分析成为现在十分重要的课题,可能从中挖掘出未知的趋势并带给人类生活 重大的改变。
大数据时代,迅速吸收、整合与分析数据的能力缺一不可,而数据又来自内部原有的数据以及未来源源不绝诞生的海量数据,最终你必须把数据转化成洞见,并且依此为本,能在各种状况采取最适当的解决方案。以下就是企业转型数据行业所需遵循的七大原则。
原则 1:从原有的业务与技术中开始着手
想要转型成以数据为本的公司,首先一定得先确认业务目标,接着便能规划战略蓝图,运用新的数据来源,达成你所设定的目标。数据成熟度与技术两者双管齐下的起点,将决定未来整趟旅程的行进过程。若能适当的部署业务与技术,就可以堪屎系统性地开展业务流程与商业模式,并且明辨哪些质化元素能被量化元素取代。
原则 2:从相互连结的物联网中建造数据景观
物联网的实现近在咫尺,而且已经产生(而且会持续产生)史无前例的巨大数据。“存活超过 20 年的企业,近来不断设法制定企业数据策略,因为他们里头有数不清的数据市集和数据孤岛。尽管公司组织努力解决数据孤岛的问题,但是宛如瀑布般倾泻而下的数据,只会一再造出新的孤岛,除非你的环境已经准备好应付那些海量数据,毕竟现在数据量产生的速度,远超 20 年前我们所习惯的步调。不过幸好,大数据热潮孕育了许多可以协助大企业管理笨重数据负担的新技术,因此能否好好善用那些新技术,把数据转化成真正的业务需求,是企业在形塑数据景观时不可或缺的原则。
原则 3:建立数据科学与分析的文化
想靠数据发威,光有技术不够,还得建立一个理解数据、而且懂得利用数据的文化,两者缺一不可,文化甚至更加重要。对我们来说,懂数据不再只是副产品,而是重要的资产,你要培养这是一种资产的心态,你要知道,数据有可能帮你重整业务流程或挖掘出新的收入来源。因此,数据科学不该只是几个人的职责,必须灌输到整间企业的全体成员身上,让所有的决策都变得更明智。
原则 4:从小做起,不断迭代
我们可以预期使用者对于资讯与数据洞见的需求会愈来愈多,这表示他们要能随时随地获取这些资讯。这不是一件容易的事情,但是企业可以先从“小事”做起,找到一个可以从数据中直接受益的业务目标,接着反覆改善,让团队不断汲取经验,最终能以数据洞悉、解决业务问题。
原则 5:用数据科学丈量数据科学的成败
要让数据当个称职的主角,你得采用数据科学的方法来判断数据科学是否成功,这不是什么跳针的玩笑话。随着你的企业从数据洞见取得的营收愈来愈多,你得要能辨析数据政策是否产生重要的改变,要发展一套尺度用衡量成败。我们怎么丈量成功或失败?洞察就是我们最重视也最关键的 KPI。
原则 6:数据的安全与隐私至高无上
只靠直觉行事很糟,但未经筛选、从良莠不齐或不可靠的数据中采集作为决策考量,更糟。倘若你无法处理数据安全以及尊重隐私,将会导致企业暴露在险境之中。维护数据资产的安全与隐私,是最基本的要务,我们总是尽己所能管理数据。
原则 7:赋予成员洞察作用点的力量
唯有公司内部的成员面对数据洞见时能够迅速产生反应,数据才有价值。这些洞见在作用点上必须有所区隔,比方说,如果现阶段的目标是优化购物车,反应够快的人就会想到可以在交易完结之前,提供消费者某些推荐商品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06