京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用于企业运营_数据分析师考试
大数据在企业运营的不同层次有着不同的作用,也对应了不同的应用方法论。本文抽象出大数据应用于企业运营的不同层次以及相应的应用方法——大数据企业运营应用金字塔模型。大数据企业运营金字塔分为7个层面,包括数据基础平台层、业务运营监控层、用户洞察与体验优化层、精细化运营与营销层、业务市场传播层、业务经营分析层和战略分析层。企业在考虑大数据应用时,此模型可以作为基础的参考方向。
数据基础平台层。数据基础平台层是大数据企业运营应用金字塔的最底层也是整个金字塔的基础层,如果基础层搭建不好,上面的应用层也很难在企业运营中发挥效果。没有数据或者没有高质量的数据,所有的分析和数据挖掘都是误导。数据基础平台层的目标是把企业的所有用户(客户)数据用唯一的用户ID串起来,包括用户(客户)的画像(如性别、年龄等)和用户行为等,以达到全面的了解用户(客户)的目的。数据基础平台层的搭建有三大关键:
(1)确定用户唯一ID。企业需要确定打通用户(客户)数据的唯一ID,可以考虑用会员注册号,或手机号或者身份证号等。企业在构建会员注册体系时,最好是使用用户手机号作为会员账号,这样方便后期整合其他外部数据源;同时使用手机号的好处在于未来可以基于手机号向会员开展相关的营销活动;
(2)有效的解决数据孤岛问题。拥有大数据的企业常常有多个业务部门,而且不同业务部门的数据往往孤立,导致同一企业的用户各种行为和兴趣爱好数据散落在不同部门,出现不同的数据孤岛,导致企业的数据资产不能很好的整合使用。解决数据孤岛的问题,需要高层重视并授权给公司级的中立数据部门,企业从上往下,有意识强有力的去整合不同业务部门的数据,解决数据孤岛,打通数据;
(3)解决数据有效管理和计算的问题。我们可以通过技术手段和规范手段把数据管理起来。重点要解决的问题是存在数据仓库里面的数据具体的含义是什么,以及如何高效的存储和计算。通过数据接入系统和元数据管理系统,我们可以有效的管理数据的定义和相关计算逻辑;通过分布式文件系统、分布式数据库等方法解决高效存储的问题;通过大数据查询分析计算、批处理计算、流式计算和内存计算等计算模式以及大数据计算任务调度系统等方法解决高效计算的问题。
业务运营监控层。业务运营监控层主要目的是帮助企业监控业务运营情况的健康度,快速发现问题并定位问题原因。我们首先要做的是搭建业务运营的关键数据体系,在此基础上开发可视化的数据产品,监控关键数据的异动,并可以定位数据异动的原因,辅助运营决策。在业务运营监控层,如果企业构建了实时计算的能力,那么很多业务运营中问题就能更快的发现。因此,业务运营监控层的工作有两大关键:
(1)梳理数据体系。数据分析师和业务负责人一起梳理业务的数据体系,尤其是对关键数据如KPI数据进行系统化的拆解和梳理。KPI数据的梳理可以以假设该数据下跌开始进行梳理。以活跃用户为例,假设某产品的活跃用户数下跌,一方面可以通过物理拆解的方式层层下钻找出影响模块,即某产品的活跃用户下跌可能是因为该产品的子模块活跃用户下跌引起,我们可以对该子模块进一步拆解分析原因,拆解的过程也是数据体系搭建的过程;另一方面,可以对活跃用户的相关因素进行数据化梳理,如新老用户的构成、用户质量、推广渠道质量的变化等多种维度进行数据化梳理;
(2)打造数据异动监控产品。企业需要构建灵活和智能的数据异动监控产品,并把梳理好的数据体系封装在数据异动监控产品中。数据异动监控产品需要有三方面的能力:一方面,数据可视化程度高易读性好,通过该产品可以清晰的看到数据体系和数据间的脉络;第二方面,通过算法实现异动原因的定位;第三方面,智能的告警功能,一旦关键数据的关键节点出问题,并可以通过短信、邮件等方式周知相关人员。
用户洞察/体验优化层。这一层主要是通过大数据来洞察用户行为和偏好以及监控和优化用户的体验问题。这一层面既运用了结构化的数据来洞察和优化,也运用非结构化的数据(如文本)来洞察和优化。前者更多的是应用各种用户行为模型来实现,后者更多的是通过监测微博、论坛和企业内部客服系统的文本来洞察和优化。具体包括以下两大方面:
(1)用户洞察。利用大数据技术抓取微博、论坛和企业客服系统等文本数据来洞察用户对产品的关注点和走势,实时掌握用户需求及动向;基于大数据的用户行为数据分析,并结合用户调研,深度掌握用户潜在需求和预期;对企业内部数据进行系统化梳理后,为企业内部数据用户搭建自助分析工具,协助企业内部数据用户(如产品经理、营销人员)灵活提取和分析数据,帮助他们进行相关研究和决策;
(2)体验优化。我们可以通过大数据构建各种用户体验监测模型来进行用户体验优化。如电商用户购买行为的漏斗模型,监控用户进入首页、查看商品产品详情、把产品放到购物车、购买以及支付等各环节之间转化率来发现用户购物过程的体验问题;通过大数据技术监测用户使用产品的评价以及时发现产品体验问题,并提交给相关产品或服务部门进行调整和优化。
业务运营监控层和用户洞察/体验优化层这两个层面终极目标是实现企业运营健康度监控的智能化,这两层面做出的工具好比是人体的体温计、血压计、B超、CT等工具,我们用这些工具就能快速透视企业运营中那一模块或者环节发生问题,以辅助相关人员进行及时的改进。
精细化运营和营销层。这一层主要的目的是通过大数据驱动企业进行精细化运营和营销。实现精细化运营和营销有六方面关键:
(1)构建基于用户的数据提取和运营工具。运营和营销人员通过简单的条件配置(如选择男性、18-24岁以及特定兴趣爱好),便可把用户信息提取出来,对相应的用户进行营销或运营活动;
(2)构建基于大数据的CRM系统。传统的CRM系统只关注企业内部数据,而大数据时代的CRM不仅仅是整合企业内部数据,还需要整合更多的外部数据,利用大数据技术获取更多实时和多元化的用户行为和偏好数据,为企业潜在用户、存留用户打标签,构建多维度及实时的用户视图,更有效掌握不同用户的价值,对不同用户实施不同的营销策略;
(3)构建基于大数据的营销活动数据挖掘体系。通过数据挖掘提升用户对营销活动的响应(如点击率),常见的数据挖掘算法有决策树、逻辑回归等,通过这些算法有效的提前识别最有可能参与活动的用户,或者发现潜客;
(4)推广渠道质量监控和防作弊。通过大数据手段建立营销推广渠道质量的监控模型,实时的监控推广渠道的效果和质量,防止渠道作弊,及时优化和挑战推广策略和预算;
(5)通过数据挖掘的手段进行客户生命周期管理,做到实时对不同生命周期的客户进行实时标记和预警,并把有效的活动当成商品一样及时的推送给不同生命周期阶段的客户;
(6)客户个性化推荐。主要是用个性化推荐算法实现根据用户不同的兴趣和需求推荐不同的商品或者产品,以实现推广资源效率和效果最大化。
业务市场传播层。这一层面要做到通过“性感”的数据分析和挖掘来辅助产品进行传播,主要有两种实现方式:
(1)制作有趣的数据信息图谱。相信大家都不喜欢看产品的公关软文,而更喜欢看好玩的有趣的内容。互联网上内容的传播更是如此。第三方数据公司CNNIC中国互联网络信息中心2014年的数据显示,10-29岁的网民占所有中国网民的55%,而这些用户偏年轻、偏“屌丝”,所以这些受众更喜欢“性感”的内容。某电商平台曾经通过统计其购买胸罩C-Cup以上的用户地区分布,发现西安的网民相对比例最多,并发布了这个数据,暗示西安女生身材好,引起不少“屌丝”网民传播。而某社交平台在则基于其8亿多活跃用户披露“逃离北上广”数据图,发现11%的用户在春节后逃离了北上广,并引起央视的深入报道;
(2)提供数据可视化产品。如某搜索引擎厂商,提供关键词搜索指数,让关注此关键词的用户可以实时掌握该关键词被网民关注的走势,在提供此服务的同时,也形成了该搜索厂商的品牌传播效应。另外一个案例是,某互联网地图服务上基于其位置定位数据,向网民展示了春节期间的全国春运出行热度图,以可视化的大数据产品形式来展现全国春运动态,网民可以在动态的出行热度图上查看某城市的人口迁入、迁出线路排行,并能进行飞机、汽车、火车等不同出行方式的热度对比,由此来知晓某地区春运的出行热度。全国春运出行热度图被央视报道,可见这样结合社会热点的数据可视化产品更被关注。
业务经营分析层和战略分析层。这两个层面更多的是运营传统的战略分析、经营分析层面的方法论,拥有大数据的企业在这两个层面的优势在于其分析的数据可以来自大数据,并且数据更新速度快,快到可以按照小时来更新甚至是分钟级的速度更新,传统的战略分析、经营分析一般是按月来统计;另外一个优势在于大数据的数据来源更多,可以对非结构化的数据进行更多的深入挖掘和洞察。但有两方面需要注意:
(1)有很多企业错误的把“业务运营监控层”和“用户洞察/体验优化层”能做的事情放在经营分析层或者战略分析层来实施。我们认为“业务运营监控层”和“用户/客户体验优化层”更多的是通过机器、算法和数据产品来实现的,“战略分析”、“经营分析”更多的是人来实现。很多企业把机器能做的事情交给了人来做,这样导致发现问题的效率较低。我们的建议是:能用机器做的事情尽量用机器来做好,尤其是“业务运营监控层”和“用户/客户体验优化层”,在此基础上让人来做擅长的经营分析和战略判断;
(2)在变化极快的互联网领域,在业务的战略方向选择上,数据很难预测业务的大发展方向,如果有人说微信这个大方向是通过数据挖掘和分析研究出来,估计产品经理们会笑了。我们认为,如果能利用数据通过机器、算法、或者人工的手段,把经营的现状和问题及原因洞悉的特别清楚已经很不错了,这样决策层就可以基于这些情况进行更好的“拍脑袋”决策。
从本质上来说,数据在业务运营监控、用户洞察和体验优化、精细化营销和运营、辅助经营分析中能起到比较好的作用,但在产品策划、产品创意等创意性的事情上,起到的作用较小。但一旦产品创意出来,便可以通过大数据AB测试,数据验证效果了。总之,本文只是提纲挈领的介绍了大数据在企业的落地方案。还有更多的细节和方法论未能展示出来,后面的文章将继续展开。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27