
大数据改良与改革中国保险业_数据分析师考试
大数据可以有效改造与升级传统保险价值链,我们称之为“改良,而最重要的“改良效应”发生在风险评估与定价、交叉销售、防止客户流失、理赔欺诈检测及理赔预防与缓解五大环节。大数据还助力险企突破创新,我们称其为“改革”。
目前,大数据作为“催化剂”在车联网、可穿戴设备、智能家居和平台生态圈构建方面起重要作用。为了更好地驾驭大数据对保险行业的改良及改革,保险公司需要从数据获取、应用和组织三大方面构建包括开拓数据来源、建立许可与信任、构建商业应用场景、数据分析与建模、数据存储与整合、组织建设、专注的数据人才、治理和文化在内的八项专业能力。
为保证整个保险行业数据应用的规范和有效,监管机构首先需在数据保护方面起到监督和引导作用,从引导行业自律和引导消费者两方面入手,推动消费者数据保护,规范商业数据应用行为。保险行业数据依赖性较强,一旦消费者隐私方面出现问题将严重制约行业可持续发展,监管机构应积极引导设立行业自愿达成并遵守行业标准,完善信息披露机制,监督行业自律。
其次,当前信息产业发展愈发迅猛,数据应用愈发复杂,给消费者识别有效信息增添难度。再加上法律体系尚未明确定义数据保护,中国消费者数据保护意识相对薄弱,因此数据获取、传递、应用中存在很多的问题和风险隐患。监管机构应高度重视金融消费者安全教育或培训,在社会上广泛宣传基本金融常识,引导消费者树立数据保护意识,减少安全隐患。
再次,监管机构需推动保险行业基础设施建设,重点在于建立行业级的数据共享平台,更好支撑风险评估、费率技术、征信、信息体系等。共享的行业数据平台能为保险行业发展带来积极作用,有助于整合行业资源、建立更科学的行业定价基准和风险管理数据库等,进而规范保险市场秩序、真正发挥保险的社会功用。
值得关注的是,我国保险业已经成立了行业数据公司,即中国保险信息技术管理有限公司,但其定位尚需探索明确。因此建议借鉴国外行业机构推动的保险数据库公司的运营定位,最终选择适合自己的发展之路。例如,英国的保险协会ABI为非盈利性机构,定位于积极代表行业影响政府政策,具有很强的行业话语权。ABI可代表90%以上保险商,制定行业规则,并提供数据和分析服务。德国的GDV为德国私人保险公司的联盟,为非政府机构,但可”软性“影响政府政策。它主要提供的产品和服务为向德国联邦金融监管局反映行业观点和需求、保护消费者权益、提供净索赔额等统计数据、进行公共关系和教育工作。美国的Verisk Analytics是纯商业性质的保险数据公司,业务主要包括以提供数据为主的风险分析,和应用风险模型为主的决策分析,还向所有行业的风险经理人提供信息服务,在保险业之外,Verisk Analytics通过持续的并购进入了医疗保健、抵押贷款等领域,扩大了其产品种类。
此外,监管机构还需推进立法工作,通过法律保障体系明确责权,建构良好市场环境。目前,美国、欧盟、国际电信联盟均通过数据保护法或隐私权保护等法案,积极寻求立法手段规范数据使用,印度、马来西亚、韩国等也在积极讨论监管议题。我国法律监管依旧存在空白地带,如何搭建基础性法律保护体系、建构长效纠纷解决机制,是监管机构的急需考虑的问题。从发达国家经验看来,严格的数据保护法律可能会对商业应用产生一定副作用,促使消费者不愿共享数据,减缓互联网信息产业发展。在此背景下,监管机构应在立法之时适度留出发展空间,从实践中探索监管创新政策。
监管创新是大数据技术不断发展深入的必然结果。例如,众安保险成立于上海,然而业务范围迅速遍布全国,迅速突破了现有的地域监管框架,甚至我们尚未意识到其他的很多挑战,例如在业务监管、偿付能力等领域。因此,监管机构应正确认识信息化产业创新发展速度,及早迎接大数据时代来临。监管机构可深入调研行业发展现状,开展顶层设计,为行业发展扫除技术或制度障碍。再者,适度宽松的产业政策可激励保险大数据的蓬勃发展,如申报重点项目、设立专项发展资金、支持技术人才培养计划、引导社会上风险投资机构进行投资等。此外,监管机构可不断探索数字化监管、跨界监管等创新监管方式,设立风险预警机制,提高监管效率,促进保险产业健康发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26