
论大数据对汽车后市场的价值_数据分析师考试
在政府提出的众多针对汽车后市场的政策中,汽车维修数据的开放成为该行业突破性发展的标志。维修数据公开以后,所融合形成的更多维度的大数据能够让整个车后市场形成一个整体,从而打破行业垄断所造成信息不对称壁垒。
在大数据基础上,整条产业链上的维修、保养等各环节商家都能更专注与自己所在的行业,所需要的相关数据只要与专门做数据的商家对接即可,这样整个行业就都做轻了,汽车后市场的竞合时代也就由此开始。
从产业链来看,当前中国汽车后服务市场基本可分七个大类:包括养护、维修、改装、二手车、汽车配件、相关电商及金融保险等。这七个大类其实可以再做细分,譬如养护就包括洗车、美容、机油及零件更换等服务。
七大类汽车服务可以分为汽车服务、车联网相关、及工具社区等三种类型,当前而言,汽车服务类的众多商家正在由重向轻变化,开始由产业链低层向中间层过度,做“服务汽车服务商”的服务商。这一类商家无论是做平台的还是做垂直服务的,在信息化方面都在向“大数据”过渡。
因为商家们发现汽车后市场服务中的竞争不在于维修人员的多少,更需要的是对原厂配件、品牌配件、工时、维修信息等数据的适配,举个例子,比如机油滤清器(简称机滤)需要与上门的客户车型匹配,可原厂机滤很贵,一般的o2o公司都使用曼牌的,那曼牌的哪款机滤适合这个客户的车型呢?这就需要用数据库来做匹配支持。在数据获取上,有数据积累的商家可以通过更多的渠道获得信息,没有积累的则会与专业的数据库企业进行合作。整个产业链对大数据服务都有重度需求。
大数据能带给行业更多的在于商家对于客户以及业务的管理,这些数据具体到汽车后市场,则是对汽车后市场服务商家在沟通用户以及商业营销的综合性管理。尤其是车型、配件、品牌、保养等数据的灵活调取与应用方面,可以让商家近距离接触车主。甚至不用询问就能了解车主用车信息,可以进一步为车主提供一站式汽车服务方案。
那么,汽车后市场需要那些数据呢?一个合格的数据服务提供商,应该做到以下几点:
全品牌全车型全配件的数据信息。要有基于VIN的全车型全配件的通配架构,配件数据库包括:VIN码识别库、车型配置库、保养规则库、配件原厂件号品牌件号通配数据库等。
与国外同步的数据库关联结构。即时同步国外零部件供应商的信息,能够保证最新车型的零部件填充数据库。
互联网化的API数据服务。保证每一个与其合作的商家,都能通过API接口对接到并调取所需的数据库信息。
至少5年以上的数据库制作经验。整个汽车后市场对数据的需求越来越大,同时也正在产生更大量的数据,数据处理经验以及数据库制作经验尤为重要。
老生常谈的数据维护。从全品牌到全车款,海量的数据挖掘与匹配,没有一个足够强大的运营团队是不行的。
DT时代,车辆上传的每一组数据都带有位置信息和时间,并且容易形成海量数据。在大数据平台上,基于对车辆数据、道路数据、环境感知数据等海量信息的处理、分析、汇总,汽车服务商或整车厂商可获得相关车主的车况、驾驶行为、里程等行车、用车过程中的数据,从而可基于大数据挖掘对车主进行精细化的管理。
以上所讲的是广义上大数据对汽车后市场行业的影响,体现在到车后服务方面,大数据确实能够解决很多问题。具体而言,大数据模式对于该行业的一些价值可以表现为以下几点:
首先,促进产业链配件交易的效率。目前,B2B配件交易通过电话询问的发单准确度不足50%,前文所述几大数据库是保证交易信息的准确性的基础,网络交易可以为商家及车主提供更详尽的配件信息,重复换货频次降低。
其次,多种选择为商家带来价格优势。数据库不只是为商家提供原厂配件信息,同时也提供其他品牌的可替换配件,车主可以根据情况选择合适的配件,同时这也是品牌商家的一个销售渠道。
再者,改变了传统的咨询方式。将传统汽配行业1对1电话询件询价方式,提升为1对多的数字化询价方式,极大的提高了商家与车主、商家与配件商的沟通效率。
同时,提供了交易配件的追溯源头可行性。数据库对配件厂商、配件分销商、配件连锁分销商、汽车保养商、配件B2B电商平台及O2O服务平台都有清楚的记录,并能够逆向查询,这样配件以及服务出现问题之后,便可以逆向找到交易源头,解决了汽车后市场服务的透明化与公正性的问题,无需再用第三方监督。
还有,符合国家提倡的“同质配件”战略。当前,中国汽车维修行业协会正在大力推广“同质配件”行动,以推进汽车维修行业健康发展。同质配件也就是“质量相当配件”,具体到汽车零配件上也就是可以替换原厂配件的零配件替代品,价格更低同时性价比更高。这个政策可以增强民族制造业积极性,并能够降低消费者维护成本。
在行业影响方面,除了以上几点,在“互联网+传统”行业方面,大数据融入传统企业的CRM系统并倒逼传统企业升级转型,是“互联网+”落到实处的一个重要的途径。
总而言之,大数据将会为整个汽车后市场行业的进步提供更有利的基础。同时,无人驾驶、车联网、智慧交通及工业4.0等也将受益其中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04