京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据市场正从基础投入迈向应用_数据分析师培训
作为当今企业信息化领域最热门的话题,大数据掀起了新一波IT投资和信息化建设的浪潮。无论是在大数据发源的互联网和电子商务领域,还是在金融、零售、制造、物流等线下业务领域,越来越多的中国企业开始思考、探索和尝试应用大数据的技术和手段,来提升营销、运营和生产的效率及效能。
个性化信息成大数据营销法宝
瞄准大数据时代带来的巨大市场机遇和广阔前景,百分点公司定位于第三方大数据技术和应用服务提供商。百分点创始人兼董事长苏萌告诉《经济参考报》记者,“数据在未来是商业里面最核心的价值,我们做的所有的事都是希望让数据能够变现”。
他介绍说,公司初创于2009年,一开始做个性化推荐引擎,为电商客户做商品个性化推荐。目前,百分点是国内第一家也是最大的推荐引擎技术服务公司。
“如果用户在浏览网站时,三次点击找不到感兴趣的内容,那么跳出率就会高达90%,因此,个性化推荐就显得尤为有价值。”苏萌说,所谓个性化信息流推送,通俗地说,就是通过用户在网站的点击实时预测用户当前的场景、偏好和需求,并将个性化的信息实时展现在用户面前,呈现出“千人千面”的不同展示。
举例来说,比如用户在PC端登陆某购物网站浏览某商品,随着用户的每一次点击,展现的内容就会不一样,网页上还会根据用户的兴趣偏好向这个用户推荐他可能喜欢的同类商品。如果用户并没有在PC端挑选好商品,当他在回家的地铁上用手机浏览该网站的手机端,随意输入搜索内容,此时PC端曾经浏览过的商品就会显示出来,用户就可以轻松地找到感兴趣的商品。通过跨屏、跨设备的打通,个性化推荐让用户轻松在PC端和移动端进行无缝浏览和购买商品。
“根据用户的行为轨迹实时预测该用户当前的场景、偏好和需求,并实时将个性化的关联信息展示到用户面前,已成为大数据营销制胜之关键技术手段。”他说。
大数据底层平台助力实体运营
而个性化推荐引擎的应用只是众多大数据应用中的一个例子。进入大数据时代,已经从信息技术走到了数据技术,如果说信息时代主要处理的是企业内部的小数据、结构化数据,那么数据技术时代,面临的则是海量的外部非结构化数据,包括用户评论数据、行为数据、社交网络数据等等。
苏萌说,就像几十年前,企业开始意识到品牌是资产但是不知道如何去评估,在大数据时代,越来越多的企业意识到数据资产的重要性。但是,怎么把这个资产调整好,把这个资产发挥出价值,怎么把这个资产沉淀到数据平台里面,以及和外部数据进行对接,这些都是要解决的问题。企业需要新的“容器”沉淀数据资产。从用户数据到企业内部数据到企业外部数据,都需要打通整合。
帮助传统企业搭建大数据底层技术平台,也是百分点目前重点发展的一条业务线。这相当于帮助每个企业建立了一个大数据管理系统。通过整合企业内部和外部的数据,对数据进行清洗、加工和建模,为线上零售、线下零售、金融证券、品牌家电制造和品牌汽车等企业的战略、运营、管理、市场、营销等不同部门提供各种数据产品和应用。
举个例子,企业客户服务中心的电话被用户接通之后,客户服务中心工作人员面前的电脑就会显示出打入电话用户的相关消费信息等。再比如,很多企业投放很多广告,但是都没有数据沉淀,这个容器就可以让数据存到数据资产中,可以知道哪儿来的流量转换率更高,从而使得广告投放更加精准。
一个形象的比喻就是,“不需要每个企业都自己去挖井才能喝水,我们挖了一个大井把水提供给大家。”
在数据资产的沉淀管理基础上,包括自动化触发营销等也都可以变为现实。比如说,一个用户在某网站看到一款笔记本电脑,过去的一周内连续三次去浏览,但都没有购买,那么系统就会预测出来这个用户有购买意愿,但是支付意愿可能低于这款笔记本电脑的价格,那么就会触发一个个性化优惠券,使这个用户达到购买价格。
应用市场将呈现三大趋势
纵观大数据市场,在苏萌看来,目前已经从基础设施投入转向了大数据的分析与应用,所有企业的数据与分析都正在转向云端。大数据应用市场将会呈现三个趋势。
第一大趋势是,大数据一定会沿着垂直领域进行深入。“我们不相信会有一种通用的大数据技术、大数据解决方案适应不同的行业。比如电商行业、线下零售行业、汽车行业、家电制造业,这些都是完全不一样的数据结构,企业需求的数据也不一样。”
第二大趋势是,大数据在企业级的软件市场将会有更多突破。目前涌现出很多优秀科技人才和创业者,包括云的智能处理,语音识别的这样一些企业。未来大数据行业也会有很多这样的企业。
第三大趋势是数据融通。大数据的出现,主要是由于出现了移动互联网以及数字化媒体,产生了大量行为的记录,对用户的了解也越来越深刻,这是大数据与以往不同的地方。如果数据不能够在企业之间流转,那么每个企业都将是一个数据孤岛。而大数据首先要解决的就是信息孤岛问题。数据是要流通的,是要交叉运用的。如果数据不能流通,那么真正意义上的大数据时代还没有到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06