
大数据市场正从基础投入迈向应用_数据分析师培训
作为当今企业信息化领域最热门的话题,大数据掀起了新一波IT投资和信息化建设的浪潮。无论是在大数据发源的互联网和电子商务领域,还是在金融、零售、制造、物流等线下业务领域,越来越多的中国企业开始思考、探索和尝试应用大数据的技术和手段,来提升营销、运营和生产的效率及效能。
个性化信息成大数据营销法宝
瞄准大数据时代带来的巨大市场机遇和广阔前景,百分点公司定位于第三方大数据技术和应用服务提供商。百分点创始人兼董事长苏萌告诉《经济参考报》记者,“数据在未来是商业里面最核心的价值,我们做的所有的事都是希望让数据能够变现”。
他介绍说,公司初创于2009年,一开始做个性化推荐引擎,为电商客户做商品个性化推荐。目前,百分点是国内第一家也是最大的推荐引擎技术服务公司。
“如果用户在浏览网站时,三次点击找不到感兴趣的内容,那么跳出率就会高达90%,因此,个性化推荐就显得尤为有价值。”苏萌说,所谓个性化信息流推送,通俗地说,就是通过用户在网站的点击实时预测用户当前的场景、偏好和需求,并将个性化的信息实时展现在用户面前,呈现出“千人千面”的不同展示。
举例来说,比如用户在PC端登陆某购物网站浏览某商品,随着用户的每一次点击,展现的内容就会不一样,网页上还会根据用户的兴趣偏好向这个用户推荐他可能喜欢的同类商品。如果用户并没有在PC端挑选好商品,当他在回家的地铁上用手机浏览该网站的手机端,随意输入搜索内容,此时PC端曾经浏览过的商品就会显示出来,用户就可以轻松地找到感兴趣的商品。通过跨屏、跨设备的打通,个性化推荐让用户轻松在PC端和移动端进行无缝浏览和购买商品。
“根据用户的行为轨迹实时预测该用户当前的场景、偏好和需求,并实时将个性化的关联信息展示到用户面前,已成为大数据营销制胜之关键技术手段。”他说。
大数据底层平台助力实体运营
而个性化推荐引擎的应用只是众多大数据应用中的一个例子。进入大数据时代,已经从信息技术走到了数据技术,如果说信息时代主要处理的是企业内部的小数据、结构化数据,那么数据技术时代,面临的则是海量的外部非结构化数据,包括用户评论数据、行为数据、社交网络数据等等。
苏萌说,就像几十年前,企业开始意识到品牌是资产但是不知道如何去评估,在大数据时代,越来越多的企业意识到数据资产的重要性。但是,怎么把这个资产调整好,把这个资产发挥出价值,怎么把这个资产沉淀到数据平台里面,以及和外部数据进行对接,这些都是要解决的问题。企业需要新的“容器”沉淀数据资产。从用户数据到企业内部数据到企业外部数据,都需要打通整合。
帮助传统企业搭建大数据底层技术平台,也是百分点目前重点发展的一条业务线。这相当于帮助每个企业建立了一个大数据管理系统。通过整合企业内部和外部的数据,对数据进行清洗、加工和建模,为线上零售、线下零售、金融证券、品牌家电制造和品牌汽车等企业的战略、运营、管理、市场、营销等不同部门提供各种数据产品和应用。
举个例子,企业客户服务中心的电话被用户接通之后,客户服务中心工作人员面前的电脑就会显示出打入电话用户的相关消费信息等。再比如,很多企业投放很多广告,但是都没有数据沉淀,这个容器就可以让数据存到数据资产中,可以知道哪儿来的流量转换率更高,从而使得广告投放更加精准。
一个形象的比喻就是,“不需要每个企业都自己去挖井才能喝水,我们挖了一个大井把水提供给大家。”
在数据资产的沉淀管理基础上,包括自动化触发营销等也都可以变为现实。比如说,一个用户在某网站看到一款笔记本电脑,过去的一周内连续三次去浏览,但都没有购买,那么系统就会预测出来这个用户有购买意愿,但是支付意愿可能低于这款笔记本电脑的价格,那么就会触发一个个性化优惠券,使这个用户达到购买价格。
应用市场将呈现三大趋势
纵观大数据市场,在苏萌看来,目前已经从基础设施投入转向了大数据的分析与应用,所有企业的数据与分析都正在转向云端。大数据应用市场将会呈现三个趋势。
第一大趋势是,大数据一定会沿着垂直领域进行深入。“我们不相信会有一种通用的大数据技术、大数据解决方案适应不同的行业。比如电商行业、线下零售行业、汽车行业、家电制造业,这些都是完全不一样的数据结构,企业需求的数据也不一样。”
第二大趋势是,大数据在企业级的软件市场将会有更多突破。目前涌现出很多优秀科技人才和创业者,包括云的智能处理,语音识别的这样一些企业。未来大数据行业也会有很多这样的企业。
第三大趋势是数据融通。大数据的出现,主要是由于出现了移动互联网以及数字化媒体,产生了大量行为的记录,对用户的了解也越来越深刻,这是大数据与以往不同的地方。如果数据不能够在企业之间流转,那么每个企业都将是一个数据孤岛。而大数据首先要解决的就是信息孤岛问题。数据是要流通的,是要交叉运用的。如果数据不能流通,那么真正意义上的大数据时代还没有到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23