
运用大数据商业分析和数据科学为企业实现商业价值
商业分析的目标
商业分析的目标是利用大数据为所有职场人员做出迅捷、高质、高效的决策提供可规模化的解决方案-“创造商业价值的数据科学”。那么对于企业成长数据分析的重要性是什么呢?不论是企业做什么事情,一定要有自己最核心的业务平台,而对于企业来讲,最重要的事情是客户及业务的增长,当客户和业务积累到一定程度的时候企业会收集和获得足够的数据,对这些数据进行分析之后会帮助企业找到更多符合客户需求的增值业务及服务,这些业务又可以做到企业最核心的业务平台里面,从而帮助企业获得更多的客户,这样就会形成一个良性的循环,使企业更加健康快速的成长。60+的商业分析团队可以服务5000+的公司人员,它为产品团队、分析团队、运营团队、客服团队、工程团队和营销团队提供有效的数据分析,分析团队对于公司的整个业务来讲是最关键的一环。
分析团队的作用
分析将技术和业务有机的结合起来,其中分析师和数据科学家的任务是既要懂技术又要懂业务,用最好的数据为业务部门创造更多的商业价值,分析团队就像胶水,要能很好的与技术部门和业务部门进行沟通,把公司很好的粘合起来。
商业分析进化论
对于公司的管理人员或者高层来说,理解到商业分析并不是一步到位的过程是非常重要的,商业分析是有一个进化的过程,从数据到洞察。对于所有的分析团队来讲,首先要做的就是数据,把数据做好才能了解到发生了什么,在这一阶段对商业没有太大的回报;第二步是从数据中挖掘一些信息和知识来了解这些事情为什么会发生,这一阶段商业的回报有所增加;第三步是预测将来会发生什么,这一阶段商业回报会进一步提高;最后一步是公司所有的决策都是通过数据分析达成的,这一阶段的商业回报是最高的。
大数据本身的三个基本技术维度:3Vs
第一个V是容量(volume),随着技术的发展,数据的的容量越来越大。第二个V是速度(velocity),当数据容量越来越大的时候会影响数据处理的速度,这时有几种方法是可以利用的,一批批的数据存储、近实时数据存数和真正的实时数据存储。第三个是多样性(variety),从各种各样的渠道获得数据,不同的数据也有不同的数据。我们可以把它分为结构化的数据,这些数据可以用传统的关系性的数据库来存储;对于非结构化的数据,例如文本、图片等不可以用传统的数据库来存储;半结构化的数据,它有结构化数据的特点又能将非结构化的数据存储起来。对于一个公司来讲,把三个维度都做好几乎是不可能的,只有把至三个维度做一个很好的平衡,才能为企业创造价值。
对企业最重要的事情
如果企业是大海,那么分析团队就是海面上的冰山一角,但在大海的下面,分析团队实际上是一座巨大的冰山。分析团队所做出的巨大的贡献业务团队在表面上是看不到的,而且每一个团队都有自己的数据分析软件,对于企业最重要的是业绩,如何将整座冰山做成一块冰棍这是需要每一个团队做出巨大的努力的。
分析团队如何推动商业价值
EOI的分析架构,主要是Empower(助力)、Optimize(优化)、Innovate(创新)。对于分析团队来讲最核心的任务是帮助各个部门拿到他们想要的数据,协助他们运用数据。优化是分析团队的战略性任务,通过对数据的理解和运用帮助业务部门做到更好。创新是分析团队的风险任务,有风险的事情可能会带来很大的收益,也可能什么都得不到。
商业分析实例
1.助力,利用交互性的数据应用给职场人员建立数据通道。人才流动画板这种动态可视化的工具可以帮助挖掘商业洞察,可以帮助你发现公司在人才争夺中的战况。
2.优化,精准营销通过分析和倾向模型精准定位优化营销策略。用户倾向预测模型(B2C),识别正确分块市场,在最好的时间宣传最适合的产品。
3.创新,用商业分析的创新将营销战略带到新的高度。大客户兴趣指数(B2B),商业大客户对相关产品的兴趣度的倾向模型。决策者在B2B的商业模式里起着非常重要的作用,从个人兴趣指数整合到大客户的兴趣指数,较高的大客户兴趣指数带来更高的交易效率和成功率。
冰山下的真正秘密
技术是实现可规模化大数据分析的基石,从最初的网络API到对数据抽取转化加载,整合和集成实现数据的可视化,这一步业务部门才开始利用数据,第四步是数据的分析平台,这个平台实际上是内部的一个网站,让公司各个部门随时能拿到他们所需要的数据,最后的数据变的非常非常小,利用起来会特别简洁。
分析团队的理念
让数据工作从大到小,实现冰山到冰棍;让数据工作从繁到简,后台的代码是非常繁杂的,做出来的产品一定要是非常简单的;让数据工作从慢到快,只要用几秒钟就可以拿到数据提高工作效率。
商业分析发展的趋势
商业需求:数据分析被整合到各个业务领域的决策过程。技术平台:飞速发展的技术带来越来越多样的数据系统。人才需求:对分析师、数据科学家的要求越来越全面。从只做技术的幕后辅助人员到懂业务、数据、科技的策略合伙人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28