
大数据”时代+“智能交通” 还需完善_数据分析师考试
安防行业的大数据主要来源于平安城市、智能交通等大型项目。据IMSResearch统计,2011年全球摄像头的出货量达到2646万台,预计到2015年摄像头出货量达5454万台。2011年一天产生的视频监控数据超过1500PB,而累计历史数据将更为庞大,在视频监控大联网、高清化推动下,视频监控业务步入大数据洪水时代不可避免。
大数据
智能大数据的最终目的是什么?
2012年的时候,笔者去广东中山交警支队,并与周警官交流。当时大数据是一个互联网概念,还没有在交警行业开始应用。在和周警官交流的过程中,他说了一段话,随格多年,仍记忆犹新。
周警官说,在中山市,天晴的时候不堵车,下雨的时候就堵车。他刚开始感性的觉得是因为交通事故造成了拥堵,后来分析交通事故处理数据,发现下雨的日子交通事故量并没有比平时多。分析了一下车流量,让他惊奇的是下雨的日子的车流量比平时大,一般来说下雨大家都不愿意外出才对,为什么下雨的车流量会增大呢?周警官做了进一步分析,深入了解中山的家庭用车方式,发现中山本地家庭一般都很富裕,家里一般是每人一车,他们的出行每天都是家里到工作地点,中午还会回家吃饭,一般出行距离都在3-5KM。天晴的时候,他们一般选择电瓶车、摩托车,方便快捷,容易停车。下雨的时候,他们一般选择小汽车,不被淋雨,更舒适。由于这种出行方式的选择,造成了中山市一下雨就车流量大,就容易堵车,这是一个城市的交通特性。分析出这种特性后,交通管理者才能更有效的对交通进行引导、疏导。
三年后的今天,再去看周警官的这段话,发现周警官已经完成了原始的大数据分析。他将各种看似没有直接联系的数据,通过他的分析模型组合起来,发现了中山市的交通特性。这个正是大数据在交通行业最大的价值。
现在我们已经可以通过电警、卡口、微波、地磁、天气环境等各种检测传感设备,将车流量的数据进行各种综合的大数据分析,分析出一个城市的交通模型,这样可以针对交通做出一些可能的预判,帮助咱们交通管理者解决管理难题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23