京公网安备 11010802034615号
经营许可证编号:京B2-20210330
深挖大数据:工欲善其值 必先利其器_数据分析师考试
“云世界”带来了巨量且巨大的数据交易,应对、分析这庞大的数据集,并将其转化成企业可从中辨识出的商业价值,才是现如今的重大问题。对此,试问自己,对大数据的到来有没有做好准备,企业是否已具备挖掘大数据核心价值的能力?我们会不会再次遗漏大数据商机呢?
能否抓住大数据
有关云世界中巨量资料的种种议题中,最显而易见的便是该如何处理并分析它,然后转化成企业可以从中辨识出的有价值的信息,这其中势必会有一段滞延时间。 若是信息未能及时取得,导致大数据可带来的商机遭受忽略,将在激烈的市场竞争中,置企业于不利地位。同时,在整个大数据生态系统中,技术纯熟度是跨越数据 与企业营运之间鸿沟的关键驱动力。我们所需要的是,可以更快速地提供完善的数据处理方案,使企业不仅可以应付未来的需求,更能立即解决现在的问题。
企业的需求若渴与大数据带来不可估量的价值才是最核心的,解决当前大数据所面临的挑战,并改善企业的分析获利能力才是关键。扪心自问,总是谈论应该如何迎接大数据的我们,是否真正解决了当前的问题与挑战,是否改善了企业捕获大数据的能力呢?
能否抓住大数据
解决数据差异性
传统BI/Data Warehouse主要擅长处理结构化数据,也就是一般常见的关系数据库里所存放的数据,但对于半结构化及非结构化数据的解决能力还不是很强,更不用说要承载半结构化及非结构化数据所伴随而来的巨量和巨大。
在大数据的处理能力中,企业应做好解决大量半结构化与非结构化数据的准备,这也是为了弥补传统BI/Data Warehouse能力空缺。落实到具体,企业在具体运用时,可将内部或外部巨量的半结构化与非结构化数据进行储存、运算、处理与分析,然后把运算与处理 分析的结果以结构化的格式,让BI/Warehouse获取,或是直接可提供搜索与搜寻。
欲淘金 先淘“器”
针对大数据的处理方案,企业所能寻求的便是各级别厂商所带来的数据数解决方案,但企业在选择的同时,也面临着不是技术效能的无法支撑,就是企业需要付出 天价的授权费。既然欲抓住大数据商机,在选择解决方案的时候,一定要谨慎再慎重。切勿成也大数据,败于无法破解。那么,适合我们的淘金器应该是怎样的呢?
首先,我们要给大数据解决方案找定位:ETE全程照料,即End-to-End大数据解决方案,也叫端到端全程照料。大数据解决方案应从行业解决方案着手,直接解决企业的待定问题,提升特定商业环节的价值,这才是我们需要并值得付费购买的地方。
其次,云部署给企业网络注入了新的架构与元素,我们要考虑到这对新一代网络的管理和运维能力,例如针对软、硬件做特殊性能调校、简化大数据处理集群部署 与运维、线性横向扩充能力(Linear Scale-out),以及可以扩充至上千节点的产品才是适合大数据,适合未来的。
最后我们要着实与企业网络的实操性,既然针对大数据有所付出,那么,所得的回报中必定要简化并降低大量部署与运维的时间成本、并快速上线运作。将第一时间留个“挖掘”工作,将繁杂的技术与系统细节留给“器”。企业最值得思索与创造的“金子”,才是挖掘出的数据价值。
大数据价值
大数据的到来,不由得我们选择逃避。对于现如今的商业环境来说,逃避大数据就意味着失败,迎接它,探求它的价值,才是企业挖掘大数据,创造更高价值、利 润的正确选择。正确的选择就是企业正确的态度,所谓态度决定一切,合理面对它,选择正确的处理方法,相信大数据给我们带来的是更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14