京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浪潮计算+大数据 克服大数据“摩擦力”
“计算+”是浪潮集团副总裁王恩东在2015年浪潮信息全国合作伙伴大会(IPF15)上首次提出的新业务战略,指出了在物理世界信息化、信息世界智能化的发展趋势下,计算重心正在向后端转移,对后端计算能力提出了新的需求和挑战,融合架构将是应对这一挑战的最佳选择。
对于计算+与大数据之间的关联,浪潮云和大数据事业部总经理张东在IPF15大数据与应用分论坛上,对大数据业务做出了非常明确的定位,“未来80%以上的计算能力都会在数据处理上,计算和数据这两个概念是密不可分的,因此大数据业务是浪潮的核心业务,围绕计算+大数据将是我们重要的计算方向。”
大数据应用要克服“摩擦力”
大数据无疑是当下最“有名”的IT技术名词,没有之一。从春运大数据到两会大数据,从IT技术人员到企业高管,从国家到个人,短短数年间,大数据就变成“街知巷闻”的热门词汇,充分说明了大数据在移动互联时代的重要性。
分析机构IDC预测,到2020年,将有2000亿台智能设备,连接至互联网,包括手机、电脑和平板电脑,以及如温度监控和网络摄像机等设备,人类所产生的数据量将超过40 ZB(泽字节),这意味着全球的数据每两年就将翻一番。同时IDC认为,从现在到2020年的大部分数据并不是由人类产生的,而是由机器,包括机器传感器以及与其他具备通信功能的智能设备,这些数据中的33%包含有价值的信息。
“一个物体要往前移动,第一要有动力,第二要克服摩擦力。大数据应用,也是一样的。今天的大数据不缺动力,因为数据的价值已经人尽皆知。所以,我们的大数据应用,需要好好研究的是怎么能够降低大数据应用的摩擦力,这个摩擦力就是应用门槛,需要让客户把大数据跑起来并且跑出有效的结果。”张东对大数据的趋势有着如是判断。
大数据的价值在于“加工”
对于用户来说,信息不再昂贵,从海量数据中获取价值变得昂贵。据统计,目前大数据所形成的市场规模在51亿美元左右,而到2017年预计会快速增长至530亿美元。
“从数据中获取价值不是需要某种技术手段,而是需要一种解决业务需求的方法,这套方法能够通过行之有效的技术手段来处理大数据的大容量、多类型和快速率这一系列问题。”浪潮云和大数据事业部副总经理李忠旭持有上述看法。
在李忠旭看来,“云计算改变了原来的资源组织方式,大数据改变了业务创新方向”,云计算资源池化的管理模式是大数据应用的前提,能够动态支撑大数据分析业务不断变化的需求。“大数据分析必然是软硬一体,就像微软能够把软件的性能优化,必然对硬件上有所要求。”
浪潮大数据:专注+合作
基于对大数据发展趋势的认知,浪潮将“专注+合作”确立为大数据战略的两个关键词,将专注于提供大数据基础架构平台型产品,专注在行业大数据应用领域。同时通过与ISV的深度合作,开发行业定制化解决方案的开发,提供软硬一体化的解决方案。
“首先应用开发和大数据系统软件,留给我们的合作伙伴进行这方面的研发,无论是数据架构还是应用架构的设计,而我们希望对底层平台优化上做的多一些。整体设计和系统交付我们做一部分,合作伙伴做一部分,由不同行业开发商做整个的交付。”这是李忠旭对浪潮大数据业务的具体设想。
浪潮与合作伙伴最终呈现给用户的,将是包含产品、咨询与交付一体化的“交钥匙工程”,包括业务应用开发、大数据系统软件、基础硬件平台的基础架构服务,应用架构设计、数据架构设计、硬件架构设计的咨询服务,以及性能调优、一体化设计和系统交付的交付服务。
值得一提的,浪潮对行业大数据的“一见钟情”事实上已逐渐显示出早有先见之明。来自大数据专家委员会的靳小龙分享的140位大数据专家调查结果显示,跨学科领域交叉的数据融合分析与应用,将成为今后大数据分析应用发展的重大趋势。他指出,“由于现有的大数据平台易用性差,而垂直应用行业的数据分析又涉及到领域专家知识和领域建模,目前在大数据行业分析应用与通用的大数据技术之间存在很大的鸿沟,迫切需要进行跨学科和跨领域的大数据技术和应用研究,促进和推动大数据在典型和重大行业中的应用和落地。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09