京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何对考试成绩进行数据分析(1)-数据分析师考试
一、原始分和标准分的定义
原始分是考试后直接从卷面上得到的分数。
标准分是指通过原始分转化而得到的一种地位量数,它反映考生成绩在全体考生成绩中的位置。因此,无论试题难或易,无论整体原始分偏高或偏低,整体标准分都没有什么变化。
二、标准分的计算
根据教育统计学的原理,标准分Z是原始分与平均分的离差以标准差为单位的分数,用公式表示为:Z=(X-A)/S
其中:X为该次考试中考生个人所得的原始分;A为该次考试中全体考生的平均分;S为该次考试分数的标准差。通过转换后得到的标准分Z在一般情况下都带小数,而且会出现负值,实际使用时不太方便,所以还要对Z分数进行线性变换(T变换): T=500+100Z
这就是我们通常所说的标准分。这种标准分的平均值为500,也就是说,如果某考生的标准分为500,则该生的成绩处于此次考试的中间位置。标准分有如下性质:
⑴平均值为0,标准差为1;
⑵分数之间等距,可以作加减运算;
⑶原始分转换为标准分是线性转换,不会改变原始分的分布形状,也不改变原来分数的位置次序。三、使用标准分比使用原始分有什么好处?
根据教育统计学的原理,原始分转换成标准分的意义可以从下面的比较中反映出来:
⑴单个标准分能够反映考生成绩在全体考生成绩中的位置,而单个原始分则不能。
例如,某考生某科的原始成绩为85分,无法说明其这科成绩究竟如何,因为这与试题的难度有关,与总体考生的分数有关。如果某考生某科的标准分为650,即Z分数为1.5,则通过查正态分布表,查得对应的百分比为0.9332,于是我们知道,该考生的成绩超过了93.32%的考生的成绩,这就是分数解释的标准化。⑵不同学科的原始分不可比,而不同学科的标准分是可比的。
不同的学科,由于试题的难易程度不同,各学科的分数价值也就不同。例如某考生的语文原始成绩为80分,数学原始成绩为70分,从原始分看,其语文成绩优于数学成绩。但如果这次考试全体考生的语文原始分平均为86分,而数学原始分平均为60分,则该考生的语文成绩处于全体考生的平均水平之下,而数学成绩处于全体考生的平均水平之上,即该生的数学成绩实质上优于语文成绩。从标准分的角度来衡量,其语文标准分小于500分,而数学标准分大于500分。由于标准分代表了原始分在整体原始分中的位置,因此是可比的。⑶不同学科的原始分不可加,而不同学科的标准分之间具有可加性。
既然不同学科的原始分不可比,那么也就不可加。多学科成绩,只有在各科成绩的平均值相同、标准差也相同的条件下,才能相加,否则是不科学的。各学科原始分的平均值以及标准差一般都不相同,而各学科的标准分的平均值以及标准差都基本相同,因此,各科的标准分是可加的。
四、什么是增值?
教学增值就是评价时将学生原有基础一并考虑,用以比较原有基础与接受教师教育后成绩增进的幅度。增值评价分为两步:首先根据原有基础得到一个输入值;然后根据教育后的成绩得出一个输出值。输出值与输入值之间的差就是增值,用公式表现就是:增值=输出值-输入值
教学增值评价法是一种借助计算机系统和统计程序。对教师的教学效果(即教师对学生学业成绩的影响程度)做出判断的教师评价方法。
一个教师的教学总会有一定的效果.对学生成绩总会产生的影响,但这种影响范围可大可小,可正可负,而教学增值评价就是将这种影响进行量化,进而遴选积极影响、转化消极影响、促成有效教学、扩大受益群体。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01