京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何对考试成绩进行数据分析(3)-数据分析师考试
在以前学院很少会对成绩统计进行分析,但是在这个大数据时代,我们必须要跟的上时代,以前考试从来没有对它进行过数据分析,同这些成绩没有一个正确的认识,下面我们就对如何对考试成绩进行数据分析呢。
教师应该知道的几种成绩统计分析方法一、成绩段统计表此方法常用,举例如下:表:某年级某学科某班学生考试成绩统计(本卷满分100分)
| 分数段 | 100~90 | 90~75 | 75~60 | 60~30 | 30以下 |
| 人数 | 9 | 16 | 14 | 8 | 4 |
| 百分率(%) | 17.6 | 31.4 | 27.5 | 15.7 | 7.8 |
| 一组 | 82 | 83 | 84 | 87 | 88 | 88 | 89 | 89 | 90 | 90 |
| 二组 | 53 | 73 | 85 | 88 | 89 | 92 | 95 | 96 | 99 | 100 |
五、差异系数标准差可以用来比较两组数据之间的离散程度的大小,但有两种情况这种比较毫无意义:一是两组数据的测量单位不同;二是两组数据的测量单位虽然相同,但它们的平均数相差较大。
这时可用差异系数(用CV表示)进行比较。公式为:CV=S / χ —×100%(式中S为标准差,χ—为平均分)例如:某一测验,一年级的平均分是50分,标准差是4.12;三年级的平均分是80分,标准差是6.04。问这两个年级的测验分数中哪一个离散程度大?由于平均数相差较大,不可以直接比较两个标准差,计算后得到一年级的差异系数是8.24%,三年级的差异系数是7.55%,显然一年级的测验分数离散程度大。
六、标准分(用符号“Z”表示)平均值与标准差用来考察与分析同质的统计资料是有价值的,但对于不同质的考试,如不同学科,或同一学科不同考试意义就不大,这时一般就要用标准分数作比较。公式为:
例:有某生三次数学考试的成绩分别为70、57、45,三次考试的班平均为70、55、42,标准差分别为8、4、5。如何看待该生的三次考试成绩的地位?如果仅从原始分数看,肯定认为第一次最好,其实不然,要计算出各次的标准分数,才能说明问题。
根据公式得出:Z1=(70-70)/8=0 Z2=(57-55)/4=0.5 Z3=(45-42)/5=0.6 这说明,原始分数为70,其位置正在平均线上,而原始分数为57的,其位置在平均线上0.5处,而原始分数为45的,其位置在平均线上0.6处。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06