京公网安备 11010802034615号
经营许可证编号:京B2-20210330
告别大数据,掌握“广数据”才是关键_数据分析师培训
大数据的概念确实有点歧义。当然,来自网络、电话、和其他数据源的信息确实数据量很大,但数据的主要价值并不在规模中。要从大数据中获取真正的商业价值,用户和BI供应商等还需要关注对广泛来源的数据的集成和分析,简言之,就是广数据。
未来商业的成功,依赖于大数据和企业主流数据系统中的数据能否有机地结合。很多供应商开发了很多技术来实现,比如在NoSQL数据库和Hadoop资源池上实现SQL查询。这种技术趋势很利于行业发展,因为新技术和老技术终究要结合起来。
对于管理大量非结构化数据来说,Hadoop是个好东西,但要实现精益分析,尤其是针对既有结构化数据、又有非结构化数据的数据结构时,Hadoop就显得力不从心了。另一方面,传统关系型数据库在利用几乎同一调用方式访问异构数据源方面,有着悠久的历史。而且从事数据分析的技术人员更熟悉的也是SQL语言。
另外,大多数用户想要的都是技术上的稳步革新,而不是彻底的变革。这意味着企业在采用新技术的同时,要最大限度地使其能够和现有IT生态系统融合,保护历史资产。因此,Hadoop集群、NoSQL数据库中的信息需要和传统的数据库和数据仓库的数据有效集成,这样才能更好地构建客户、市场趋势、企业运营视图。比如社交媒体的客户情感数据固然有价值,但如何不能和其他客户数据、市场数据相联,反应的情况也是片面的。
物联网数据不能孤立
物联网(IoT)也是大数据的重要数据源之一。安装在产品和机器设备上的传感器可以捕捉数据,并通过互联网将数据发送回运营系统。物联网大多应用于大型制造业,比如石油管道的远程传感器监控,卡车、货车等车辆的维护相关信息收集。
物联网的作用很大。传感器发回的大量信息可以帮助用户更好地监控质量问题、了解地域差异等等。物联网数据增长迅猛,随着时间的发展,很可能会差多Web数据。但同样,如果只是狭义地关注物联网数据,没有把它和众多其他数据源的数据集成,企业会错过很多有价值的信息。
数据仓库的潜力还没有完全发挥出来。一个主要的原因就是数据仓库很难利用实时数据。另一方面看,数据仓库处理的多是历史数据等变化缓慢的数据,处理这些数据根本不需要像处理实时数据一样。因此,好的BI和分析平台应该是既能处理历史数据,又能处理实时数据。将数据仓库和大数据技术结合起来,可以考虑内存处理。
下一代大数据技术应该解决的难题
更广义来看,大数据还应包括数据的流动,即数据从数据源产生到交到用户手里的过程。很多专家责难企业数据仓库没有“单一真相”,同样的数据产生出五花八门的分析结果,以及难以实现有效的数据治理。
现在,移动设备和自服务BI工具极大地改变了信息的传播范围。当数据进入移动设备,你很难监管它的传播。都有谁看了该信息?信息传播的轨迹是怎样的?有效的BI和大数据管理不只是收集和处理信息,也是管理信息的流通和传播。
数据规模确实是一个技术难题,但核心的问题在于广数据。如何将多种数据源的数据集成起来,如何处理,再如何让广大的用户用于业务决策和分析,这才是技术应该最主要关注的问题。要做到支持广泛的数据环境,供应商需要关注这些问题:
提供结构化数据和非结构化数据的访问,并能有效集成
能够以不同的方式有效管理不同的数据集
支持强大的数据治理模型
下一代BI和大数据技术必须能够解决数据的广度和复杂度的问题,而不仅仅是数据量。大数据不仅仅是数据量的大,更包含数据的广泛性。用户和供应商最好能在这一点上达成共识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16