京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈SEM数据分析的意义、维度和结果_数据分析师
提起SEM,不可避免的要谈到数据分析。“对数据变IC芯片激光打标样品-IC芯片化敏感,具有一定的数据分析能力“是所有公司都会提到的硬性要求。那么,SEM的数据分析到底应该怎么做呢?利用SEM数据分析又能IC芯片激光打标样品-IC芯片起到怎样的效果呢?从数据分析的”意义“、”维度“和”结果“这三个方面来考虑,这些问题就不难回答。
同理,SEM的数据分析也是如此,我们只是通过数据分析在行业低谷到来前避免潜在的无效投放,在行业高峰来临之际,做好充足准备。如此进退有度,SEM效果也会随之提升。 SEM数据分析的维度 几乎所有SEM推广账户的后台都能为用户提供数据统计和下载服务。面对琳琅满目的数据记录,不少SEMER会看花眼。我们该看哪些数据呢?这就要求SEMER拥有一定对数据维度筛选的能力。我们需要根据自己投放SEM的目的来筛选需要的维度去看数据,这样不但不会让人头晕,更能提高我们数据分析的效率。
目前,SEM的投放目的基本可以分为效果投放和品牌宣传两类。其中,效果转化是指以咨询量、订单量等为目的的投放。从结果倒推回去看,这样我们会发现要有咨询和订单需要用户访问我们的网站,而让用户访问我们的网站则需要网站有展现,并且要有足够的出价来确保其必要的排名,这样能保证一定的点击量。所以,效果投放的账户往往需要关注点击量、展现量、点击率、消费、平均排名等相关维度的数据。另外,还要根据咨询收益、订单收益计算投入产出。更细化的数据,还可以关注到每一个页面的转化率等。
品牌宣传更注重网站品牌的曝光率。这就需要我们更关注网站的展现量,以及不同关键词和搜索词的具体展现和点击等。如果想进一步了解网民对品牌的认知度,还可以观察每个访客的访问深度,以及各个页面的停留时长等。 此外,要真正做好SEM的数据分析,SEMER还需要根据各自的情况,关注推广账户外的数据。通过其他终端各维度的数据反馈和整合,做好SEM的数据分析。 SEM数据分析的结果 如前文所说,SEM的数据分析可以改善投放效果。
但是,SEM最终的结果其实可以包含更多。比如,SEM的数据分析可以为SEO提供更多帮助。 众所周知,SEO的操作要通过较长的时间来体现效果。因此,选词、站内布局都必须慎重。若一开始就错了,那么后面无论是终止,还是修改,都会造成时间、人力等成本的浪费。可谓“一步走错,全盘皆输”。而SEM的投放只要审核通过后便开始进入数据收集和反馈阶段。通过SEM投放,我们很快就能知道关键词的搜索量如何,转化如何,有没有其他相关关键词等。凭借SEM投放得到的数据,加以分析和筛选,再交由SEOER去操作,这样能更明确操作方向,并节省不少摸索的时间。
一个SEMER在做SEM数据分析的时候该做些什么呢? SEMER们既可大张旗鼓的做上几十页数据报表并加以分析陈述,也可以简单的只花几分钟汇总一下某个时段的投放数据。SEM的数据分析犹如人的一生,或浓郁烈酒,或淡如白水,关键是从中能得到什么。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06