
大数据背景下的中国征信体系如何发展_数据分析师
互联网金融的发展需要以信用为基础,征信的发展和完善将为互联网金融的健康发展提供有力保障。征信是以数据为基础,对其进行的采集、整理、加工以及使用。大数据不仅可以为征信体系的建设提供丰富的有效数据,也可以从根本上改变传统征信产品的设计理念,间接助推互联网金融发展。
目前征信体系比较完善的国家和地区主要有美国、欧洲和日本,且其征信模式各不相同:
1.美国征信体系最大的特点是市场化。在美国,Equifax、Experian和TransUnion三家征信公司“三足鼎立”,分别拥有覆盖全美的数据库,其中包含超过1.7亿消费者的信用记录。这些海量的个人征信数据经过FICO的计算方法模型形成征信产品——信用分析报告和325-900分值区间的评分。
2.欧洲征信体系最大的特点是由政府主导。大多数的欧盟成员国,如德国、意大利、西班牙等,都采用以央行建立的中央信贷登记系统为主体的社会信用管理模式。所有银行统一接口,依法强制向央行信用信息局提供其所有的征信数据,由央行搭建全国性的数据库。
3.日本征信体系最大的特点是会员制。包括银行、信用卡公司、金融机构、企业、商店等机构都是信用信息中心的会员,通过内部共享机制实现中心和会员之间的征信信息互换。会员有义务向中心提供客户个人征信数据,中心也仅限于向会员提供征信查询服务。
我国征信业发展尚处于起步阶段,围绕征信体系建设的法律法规、业务规则以及数据处理模式及方法都需要完善和加强。截至目前,在征信领域中国和欧洲类似,央行征信系统一家独大。但是,在中国,虽然央行手握庞大的数据库,其存在以下几个问题一直为人诟病:
1.封闭。互联网金融的快速发展并没有得到央行任何实质性的支持,央行所把持的征信大数据并没有助力中国互联网金融的发展。征信领域的缺陷也使得中国互联网金融的发展并非一帆风顺,特别在P2P领域,跑路现象非常严重,给互联网金融的发展带来了很大的负面影响。
2.方便性差,代价高。就个人来说,只能到各地的人民银行查询个人信用数据,且只有两次免费机会;企业的话更难,没有好的公关,很难想像哪家企业可以获得这些数据。
3.数据失真严重。鉴于我国人口流动性强,央行统计的数据覆盖人群以及涉及的维度都有限,很难准确反映人们的日常需求。
大数据催生的征信体系建设可以很好的解决央行征信体系面临的问题,因为其数据覆盖面广,涉及的维度更全面,通过互联网方便快捷的服务全体商家。
首先,大数据必然优化整个征信市场的格局。在现在的市场中,电商已经成为征信体系建设的排头兵。以阿里巴巴和腾讯为例,蚂蚁金融利用阿里巴巴旗下或者持股的淘宝、天猫、支付宝、高德地图、UC浏览器、微博、优酷等收集客户的行为数据和信用情况,建立了涵盖数十万企业以及数亿个人的数据库,其征信体系的模型令人期待;腾讯也一样,基于帮助金融机构提高风险管理水平以及助推普惠金融的理念,腾讯财付通团队从设计、应用、机器学习以及数据建模上,利用腾讯大数据,分析用户行为,向金融机构提供用户信用风险。除了电商,传统金融机构也在积极构建征信体系,如平安集团就想要整合旗下各公司相关的网贷信息、银行信贷信息、车辆违章信息等,建立金融数据挖掘中介机构。此外,互联网金融的发展也催生了很多新型征信机构,一些大数据公司依靠技术手段,以电子商务、社交网络为平台,采集信息,提供信用信息服务。
其次,未来的征信业将以智能数据分析系统为平台,依靠大数据挖掘技术实现转型升级。一方面依托大数据的征信体系可以深度挖掘用户信用信息,防范潜在的信用风险,实现有效的风险控制;另一方面,依托大数据的征信体系可以在数据充分信息化的基础上实现精细化管理。
第三,依托大数据可以实现征信业的差异化竞争。通过采用不同的数据,应用不同的数据处理方法或者模型,开发针对不同市场或者客户的产品,实现差异化竞争。
第四,大数据可以拓展征信数据来源。在大数据的帮助下,征信机构可以实现从之前实体机构,如政府部门、金融机构等,中采集信息向从互联网等虚拟世界中获取信息的转变。因为大数据使得能反映主体信用情况的征信数据来源更加多元化、层次化和非结构化,其相应的深度和广度也随之增加。
与此同时,大数据的发展也将对征信业的监管技术和水平、信息安全和隐私的保护、数据处理的能力以及基础硬件的升级提出更高要求。所以随着大数据时代的到来,未来的征信体系要在制度、技术、信息共享方式以及管理方面不断创新,以促进征信业的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28