
先有想象力,才能活用大数据_数据分析师
大数据来了,每个人都有机会从中淘金,当然,你的工作内容也将出现大地震!
“巨量数据对个人的影响,可能最令人意想不到。在某些特定领域……,原本的专业知识就变得不足挂齿了。”《大数据》作者维克托·迈尔-舍恩伯格(Viktor Mayer-Schonberger)在书中强调。
要在这个新领域成为赢家,比的不是统计能力,“唯有具备想象力,才能找到大数据真正的创新价值。”维克托·迈尔-舍恩伯格表示。
台湾中研院信息科学研究所副研究员陈升玮解释,这一波大数据趋势有两大重点:“数据重用”与“异类数据结合”。也就是说,把看似不相干的数据,放在一起分析、运用的能力,将越来越重要。
而看似无关的数据结合,靠的就是想象力。不过,想象力到底该如何培养?
“想象力没办法坐在那边想就出来,它是需要练习的。”Google台湾董事总经理简立峰接受《商业周刊》专访时解释。
以下是简立峰独家分享,Google聪明人是怎样从生活、工作中锻炼想象力的摘要。
别光“下指令”,用Data做决策 抛去旧框架,用搜集数据讨论问题
谈到大数据时代,企业主管到一般员工最需要具备的能力是什么,我认为,还是相信data(数据),凡事用data做决策:“show me the data!”决策是基于数据,不是人为个人喜好,是数据告诉我该怎么做。
企业主管必须先相信数据,接着建立数据,才可能有“大数据”。老板要打从心里认同“data driven decision making(数据导向决策)”的重要性,当有一天数据推翻老板看法时,他必须接受,抛去过去的框架、成见,鼓励员工搜集数据来讨论问题,而不是凭自己的意见下指令。
别总是“听说”,用Data找答案 在不疑处充满怀疑,想尽办法求证
提到想象力(为何重要),因为大数据主要是用在创新,开创新的商业模式。
如果你想练习想象力,首先,它就是“think out of box(跳出框架思考)”,无处不怀疑,人家不怀疑的地方,你充满怀疑就对了,而且,懂得怀疑的人,会愿意相信数据,因为他要说服自己不容易,所以得找出数据证明。
我跟我家小孩最喜欢玩的东西,就是看到一件事情,马上去求证它,例如,(有网络消息说)火星上看到一个巨人影像,我们就开始求证是真的还是假的,想尽办法开始搜寻。你可以用图找原始图,找出全世界有多少网站有这张影像,最后,我发现,我要找的链接是NASA网站,(结果)上面就写这是一张假的照片……。这种事情如果养成习惯,你才能有怀疑的能力。
别老“坐着想”,用Data找观点 多讨论,在不同意见中找出最好的
想象力没办法坐在那边想就出来,你还要有分析力,能够把一件事情拆成一百个角度去看,你就有机会刺激想象力,但如果你只有十个角度,你就很难有机会有想象力,想象力是要训练的。
几周前,我们有一个跨部门产品经理的会议,他们都是很有创意的年轻人,大家对土耳其市场搜寻流量突然增加那么多,感到很好奇,现场大概有20个人,马上抛出一百个观点,例如,最近的GDP是否成长?上网的渗透率是否成长?是不是有4G在建设……?接下来大家会很快地debate(辩论),把不合理的因素拿掉,筛出来之后,找出一、两个最有机会的,看要怎么去求证,这就是一个组织展现很强的分析能力。
要如何训练分析力,就是增加大家讨论的机会,美式公司开会表达意见的机会多,意见一旦多,你就要学习从不同意见中找出最好的,如果一个组织是上与下的关系,每次都只有一个人说话,这就培养不成了,越是扁平组织架构,越容易促进大家讨论。
最后,大数据很重要的是求证,Google里面很多数据分析师并不是天马行空地想,相反的,他们都是很严谨的人。
但别把大数据讲成统计学和数学,它只是你会不会懂得观察,生活上很多东西就是大数据的判断,我用搜索引擎也跟统计无关,我觉得用“科学家”这个词就把人吓坏了。大数据真正的用意,就是你重视data,找方法把data转换成价值就可以了,至于“大”(指所谓巨量数据),全世界需要处理大量数据的企业没几个,留给专家处理就好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23