京公网安备 11010802034615号
经营许可证编号:京B2-20210330
先有想象力,才能活用大数据_数据分析师
大数据来了,每个人都有机会从中淘金,当然,你的工作内容也将出现大地震!
“巨量数据对个人的影响,可能最令人意想不到。在某些特定领域……,原本的专业知识就变得不足挂齿了。”《大数据》作者维克托·迈尔-舍恩伯格(Viktor Mayer-Schonberger)在书中强调。
要在这个新领域成为赢家,比的不是统计能力,“唯有具备想象力,才能找到大数据真正的创新价值。”维克托·迈尔-舍恩伯格表示。
台湾中研院信息科学研究所副研究员陈升玮解释,这一波大数据趋势有两大重点:“数据重用”与“异类数据结合”。也就是说,把看似不相干的数据,放在一起分析、运用的能力,将越来越重要。
而看似无关的数据结合,靠的就是想象力。不过,想象力到底该如何培养?
“想象力没办法坐在那边想就出来,它是需要练习的。”Google台湾董事总经理简立峰接受《商业周刊》专访时解释。
以下是简立峰独家分享,Google聪明人是怎样从生活、工作中锻炼想象力的摘要。
别光“下指令”,用Data做决策 抛去旧框架,用搜集数据讨论问题
谈到大数据时代,企业主管到一般员工最需要具备的能力是什么,我认为,还是相信data(数据),凡事用data做决策:“show me the data!”决策是基于数据,不是人为个人喜好,是数据告诉我该怎么做。
企业主管必须先相信数据,接着建立数据,才可能有“大数据”。老板要打从心里认同“data driven decision making(数据导向决策)”的重要性,当有一天数据推翻老板看法时,他必须接受,抛去过去的框架、成见,鼓励员工搜集数据来讨论问题,而不是凭自己的意见下指令。
别总是“听说”,用Data找答案 在不疑处充满怀疑,想尽办法求证
提到想象力(为何重要),因为大数据主要是用在创新,开创新的商业模式。
如果你想练习想象力,首先,它就是“think out of box(跳出框架思考)”,无处不怀疑,人家不怀疑的地方,你充满怀疑就对了,而且,懂得怀疑的人,会愿意相信数据,因为他要说服自己不容易,所以得找出数据证明。
我跟我家小孩最喜欢玩的东西,就是看到一件事情,马上去求证它,例如,(有网络消息说)火星上看到一个巨人影像,我们就开始求证是真的还是假的,想尽办法开始搜寻。你可以用图找原始图,找出全世界有多少网站有这张影像,最后,我发现,我要找的链接是NASA网站,(结果)上面就写这是一张假的照片……。这种事情如果养成习惯,你才能有怀疑的能力。
别老“坐着想”,用Data找观点 多讨论,在不同意见中找出最好的
想象力没办法坐在那边想就出来,你还要有分析力,能够把一件事情拆成一百个角度去看,你就有机会刺激想象力,但如果你只有十个角度,你就很难有机会有想象力,想象力是要训练的。
几周前,我们有一个跨部门产品经理的会议,他们都是很有创意的年轻人,大家对土耳其市场搜寻流量突然增加那么多,感到很好奇,现场大概有20个人,马上抛出一百个观点,例如,最近的GDP是否成长?上网的渗透率是否成长?是不是有4G在建设……?接下来大家会很快地debate(辩论),把不合理的因素拿掉,筛出来之后,找出一、两个最有机会的,看要怎么去求证,这就是一个组织展现很强的分析能力。
要如何训练分析力,就是增加大家讨论的机会,美式公司开会表达意见的机会多,意见一旦多,你就要学习从不同意见中找出最好的,如果一个组织是上与下的关系,每次都只有一个人说话,这就培养不成了,越是扁平组织架构,越容易促进大家讨论。
最后,大数据很重要的是求证,Google里面很多数据分析师并不是天马行空地想,相反的,他们都是很严谨的人。
但别把大数据讲成统计学和数学,它只是你会不会懂得观察,生活上很多东西就是大数据的判断,我用搜索引擎也跟统计无关,我觉得用“科学家”这个词就把人吓坏了。大数据真正的用意,就是你重视data,找方法把data转换成价值就可以了,至于“大”(指所谓巨量数据),全世界需要处理大量数据的企业没几个,留给专家处理就好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15