京公网安备 11010802034615号
经营许可证编号:京B2-20210330
把握客户需求 “淘金”大数据市场_数据分析师
目前,虽然中国大数据市场还处在初级阶段,但增速非常迅猛,应用也极其广泛,不管是云计算、物联网、智慧城市还是移动互联都要与大数据扯上关系。未来是数据为王的时代,大数据应用将会越来越广泛的落地在各个领域,大数据绝对是企业未来实现业务突破的重点。
淘金大数据
很多人说,大数据就是大量的数据,事实上,大数据不仅是大,它的复杂性和沙里淘金的重要性对于各行各业的企业而言都是一个头疼的问题。因为客户无法在一定时间内使用传统数据库软件工具对大数据内容进行抓取、管理和处理的数据集。因此,专家认为,大数据的真谛就是在海量数据中淘金的过程。
这一观点同HDS不谋而合, 即HDS更关注、处理有意义的大数据。中国的大数据特点十分显著,这些特点促成了今天中国的行业客户面对大数据应用时的需求在一定程度上存在的共性。简而言之可以归结为以下三点:
首先,数据体量大,这些大型的数据集有可能会达到PB规模。这就促使客户数据容量的需求非常显著;其次,数据类别繁琐,囊括了半结构化和非结构化数据,从而促使客户需要借助智能工具,实现对所有类型数据的索引、搜索和发掘。最后,所有的这些大数据应用的需求,都能够为企业带来价值。
HDS专注于利用大数据为企业实现真实的业务价值,也就是所谓的“Internet of Things that matter(关键型物联网)”。利用HDS的IT基础架构、分析、内容、云解决方案及服务,可以说推进了整个世界的数据战略管理和分析。而且HDS能够有效整合信息技术(IT)和运营技术(OT),从而为企业和社会的转型及发展提供有价值的商业洞察。从而满足上述不同行业客户对大数据的应用需求。
适用于各行灵活方案
确实,HDS基于对云计算和大数据的深入研究,提供的IT基础架构、分析、内容、云解决方案及服务,已经帮助客户应对在医疗、生命科学、能源研究、社会基础设施等各领域的诸多挑战和需求。
首先,针对大数据的容量需求,HDS 的第一大“利器”是针对结构化数据的虚拟存储平台(Virtual Storage Platform,VSP)是业内唯一可进行三维扩展的存储平台:(1)纵向扩展,在单一单元中增加处理器、连接性和容量,从而优化开放系统与大型机环境的性能;(2)横向扩展,满足不断升级的服务器需求和容量要求;(3)纵深扩展,优化多厂商存储环境,从而保证所有存储资产的投资回报。目前,借助HUS中型企业可以在不影响性能的情况下能够扩展系统容量达到近3PB,自动更正性能问题,通过动态虚拟控制器实现快速预配置。此外,通过VSP的虚拟化,大型企业可以创建接近四分之一EB容量的存储池。
其次,针对大数据最于难应对的非结构化数据,HDS 的应对“利器”是内容归档平台HCP(Hitachi Content Platform),它能把结构化和非结构化数据集成到一个单一的动态归档架构中,同时有效消除各种应用的冗余数据。另外,HDI(Hitachi Data Ingestor)能与HCP 紧密结合,将HCP 数据快速、安全地分发到用户和现有应用程序,从而实现区域的数据分享。
最后,所有的大数据方案都是为了给客户带来大价值。这也是关注、处理有价值数据的HDS的一贯宗旨。HDS的先进大数据方案和服务,确保了客户IT投资的价值并充分发掘数据资产的价值。HDS VSP 可实现将其全部虚拟化,并将同一类型的硬盘(如SSD、SAS、SATA)重新“捆绑”在一起。HDS 还采用了动态分层技术。针对结构化数据的存取,一定要“快”。HDS VSP可以根据数据被调用的频率,自动将常用的数据搬到最高层,提高效率。
另外,HDS 虽然拥有庞大的数据,但是躺在那里睡觉的数据是没有任何价值的,只有盘活这些数据,才能体现出数据资产的价值。利用HCP,就像使用Google 搜索网络内容一样在其内部网络上轻松快捷地搜索所需内容。为了不增加用户的负担,HCP 不会给用户造成新的存储孤岛,也不需要更多的软件工具和管理界面,而是为用户提供了一个单一管理界面,为用户实现包括HCP 在内的整个HDS 的分层存储环境的监测、报告与控制,从而降低了运营成本,最大化地实现投资回报率。
HDS专注于利用大数据为企业实现真实的业务价值。利用HDS的IT基础架构、分析、内容、云解决方案及服务,HDS能够有效帮助各行业客户整合信息技术(IT)和运营技术(OT),为企业和社会的转型及发展提供有价值的商业洞察。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12