京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何助中国女足“脱胎换骨”_数据分析师
中国女足过去的体能只能支撑60分钟的比赛,现在世界杯三场小组赛每场都能拼到最后,没有队员出现抽筋等严重体能问题。另外,让人啧啧称奇的是,三场激战之后,现在中国队内竟然没有任何重大伤病号,所有球员都可以上场比赛。
中国队主教练郝伟对新华社记者透露:中国女足球员体能状况明显改善,必须要感谢大数据的有力支撑。他说:“我们队现在每天都做大量数据分析。我们每堂训练课达到的强度,全是通过科学的数据分析来确定!我们在世界杯备战期间,一直进行大数据监控,因此对每个训练项目都很清楚。大数据让训练量化、清晰化,为我们提供了非常有价值的参考。”
郝伟执教中国女足之后,体能训练的内容不再是过去那样单调地跑圈,而是像国外先进球队一样通过小场地的有球对抗训练进行,既练习了个人技术、战术配合,同时又提升了体能。中国队从4月下旬在北京开始集训一直到现在,小场地对抗几乎是每堂训练课的必练内容。每次训练在场边一定会有一个人静静地站着。和动来动去的教练、球员以及队医等保障人员不同,他一直关注眼前电脑屏幕上飞快变动的数据。
这些数据涉及球员跑动距离、加速跑、心率和脂肪消耗等,每秒都在变化。不时会有球员过来问他,“我跑了多少米了”,他马上就能给出准确到个位数的答案。
他是中国女足专门请来的体能和数据分析专家魏宏文,是北京体育大学运动康复系体能教研室的博士。他的出现标志着中国女足进入了系统大数据分析的时代。
魏宏文和中国足球渊源颇深,曾经先后在马元安、马良行、王海鸣、张海涛、裴恩才、高荣明、商瑞华和高洪波等国内知名教练团队内服务过。他崇尚德国体育科学,自己也像德国人一样严谨能干。来到加拿大之后,他每天都要分析大量数据,忙得不可开交。
他说:“我从早上起床一直要忙到晚上。早上要对球员进行尿检,测体重。训练课时我收集所有球员的跑动距离、心率、强度和运动量等数据,回到酒店就要赶快做分析,晚上要把数据交给教练组。然后我要再做一次球员的尿样分析,如有异常的第二天上午还要复查。每天还要通过分析数据为球员配备营养品。一天下来想想,属于自己的时间可能也就一个多小时吧。我们保障团队每个人都特别忙,大家都特别敬业。其实,我越忙就会提供越多的数据,郝伟等教练就更忙。郝伟是个具有新型足球理念的教练,特别重视数据,并且善于分析数据。这点相当了不起。”
魏宏文从国内带来一台尿样分析机,另外还从加拿大当地借了一台GPS分析机。每天他都要从这两台机器上提取宝贵的数据。“分析尿样的机器是我从北体大借来的。我们学校、系以及教研室的领导特别支持中国女足,因此特批我停课来中国队做技术支持。我们希望能像德国科隆体育学院支持德国队一样支持中国队。中国女足也是我的老家,从12年前的美国世界杯开始,我就为中国队服务了,”他说。
和以前不同的是,魏宏文现在多了一台GPS分析机。这是他第一次在国家队内使用这种大数据采集和分析的机器。这是中国队的宝贝。每次中国队训练,魏宏文都要给队员穿上带有传感器的特制背心,然后在场边支起信号收集仪,打开GPS分析机,所有球员的训练数据就源源不断地传进了分析机内,形成海量数据。据说大数据收集做得最好的德国男足国家队,10个球员用3个足球进行训练,10分钟就能产生700万个可供分析的数据点。
魏宏文没有透露中国队每场训练或比赛能采集到的数据量,只说:“很多很多!我们以前国家队的主教练也想获得球员训练和比赛中的数据,但苦于没有科技手段帮忙,当时我们都用目测等原始手段,很不严密。现在有了技术手段,就可以获取这些数据了。当然受制于科研工作条件所限,我们没法和德国队比。去年夏天,德国队数据团队来北京讲课,我去听过。看了他们的PPT,我发现他们做数据的人很多很多。”
记者在中国队训练现场发现,全队只有一小半球员穿着数据采集背心。一位没穿背心的球员告诉记者,中国队来到加拿大后没能拿到足量的背心,因此只能采集一小半球员的数据。
记者问一位中国队内负责人为什么不能拿到足量的背心。他透露,球队教练组为此非常着急,希望能给每个球员配备一件背心,但中国足协那边没法解决。因为购买这些装备要花费一百多万,属于政府采购,需要做年度预算,控制非常严格,不可能马上就能去买。所以中国队只能靠专业公司赞助或者租借,于是就很难拿到足够数量的装备。
中国女足的大数据采集和使用虽然还处于起步阶段,但已经给她们的比赛和训练带来了很大帮助。负责训练的助理教练常卫巍说:“数据就是我们的眼镜,让我们在训练中看得更清楚了,球员哪里不足我们就重点练哪里,直到数据显示没有问题。这样训练的目的性更强,训练质量也更高。”中国女足主教练郝伟认为,大数据不仅帮助球队改善体能,而且也能帮他确定球员状态和比赛具体战术等。他说:“毫无疑问,大数据对于我们保证球员身体状态和完成训练、比赛任务的帮助很大,起到了关键作用。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15