
大数据如何助中国女足“脱胎换骨”_数据分析师
中国女足过去的体能只能支撑60分钟的比赛,现在世界杯三场小组赛每场都能拼到最后,没有队员出现抽筋等严重体能问题。另外,让人啧啧称奇的是,三场激战之后,现在中国队内竟然没有任何重大伤病号,所有球员都可以上场比赛。
中国队主教练郝伟对新华社记者透露:中国女足球员体能状况明显改善,必须要感谢大数据的有力支撑。他说:“我们队现在每天都做大量数据分析。我们每堂训练课达到的强度,全是通过科学的数据分析来确定!我们在世界杯备战期间,一直进行大数据监控,因此对每个训练项目都很清楚。大数据让训练量化、清晰化,为我们提供了非常有价值的参考。”
郝伟执教中国女足之后,体能训练的内容不再是过去那样单调地跑圈,而是像国外先进球队一样通过小场地的有球对抗训练进行,既练习了个人技术、战术配合,同时又提升了体能。中国队从4月下旬在北京开始集训一直到现在,小场地对抗几乎是每堂训练课的必练内容。每次训练在场边一定会有一个人静静地站着。和动来动去的教练、球员以及队医等保障人员不同,他一直关注眼前电脑屏幕上飞快变动的数据。
这些数据涉及球员跑动距离、加速跑、心率和脂肪消耗等,每秒都在变化。不时会有球员过来问他,“我跑了多少米了”,他马上就能给出准确到个位数的答案。
他是中国女足专门请来的体能和数据分析专家魏宏文,是北京体育大学运动康复系体能教研室的博士。他的出现标志着中国女足进入了系统大数据分析的时代。
魏宏文和中国足球渊源颇深,曾经先后在马元安、马良行、王海鸣、张海涛、裴恩才、高荣明、商瑞华和高洪波等国内知名教练团队内服务过。他崇尚德国体育科学,自己也像德国人一样严谨能干。来到加拿大之后,他每天都要分析大量数据,忙得不可开交。
他说:“我从早上起床一直要忙到晚上。早上要对球员进行尿检,测体重。训练课时我收集所有球员的跑动距离、心率、强度和运动量等数据,回到酒店就要赶快做分析,晚上要把数据交给教练组。然后我要再做一次球员的尿样分析,如有异常的第二天上午还要复查。每天还要通过分析数据为球员配备营养品。一天下来想想,属于自己的时间可能也就一个多小时吧。我们保障团队每个人都特别忙,大家都特别敬业。其实,我越忙就会提供越多的数据,郝伟等教练就更忙。郝伟是个具有新型足球理念的教练,特别重视数据,并且善于分析数据。这点相当了不起。”
魏宏文从国内带来一台尿样分析机,另外还从加拿大当地借了一台GPS分析机。每天他都要从这两台机器上提取宝贵的数据。“分析尿样的机器是我从北体大借来的。我们学校、系以及教研室的领导特别支持中国女足,因此特批我停课来中国队做技术支持。我们希望能像德国科隆体育学院支持德国队一样支持中国队。中国女足也是我的老家,从12年前的美国世界杯开始,我就为中国队服务了,”他说。
和以前不同的是,魏宏文现在多了一台GPS分析机。这是他第一次在国家队内使用这种大数据采集和分析的机器。这是中国队的宝贝。每次中国队训练,魏宏文都要给队员穿上带有传感器的特制背心,然后在场边支起信号收集仪,打开GPS分析机,所有球员的训练数据就源源不断地传进了分析机内,形成海量数据。据说大数据收集做得最好的德国男足国家队,10个球员用3个足球进行训练,10分钟就能产生700万个可供分析的数据点。
魏宏文没有透露中国队每场训练或比赛能采集到的数据量,只说:“很多很多!我们以前国家队的主教练也想获得球员训练和比赛中的数据,但苦于没有科技手段帮忙,当时我们都用目测等原始手段,很不严密。现在有了技术手段,就可以获取这些数据了。当然受制于科研工作条件所限,我们没法和德国队比。去年夏天,德国队数据团队来北京讲课,我去听过。看了他们的PPT,我发现他们做数据的人很多很多。”
记者在中国队训练现场发现,全队只有一小半球员穿着数据采集背心。一位没穿背心的球员告诉记者,中国队来到加拿大后没能拿到足量的背心,因此只能采集一小半球员的数据。
记者问一位中国队内负责人为什么不能拿到足量的背心。他透露,球队教练组为此非常着急,希望能给每个球员配备一件背心,但中国足协那边没法解决。因为购买这些装备要花费一百多万,属于政府采购,需要做年度预算,控制非常严格,不可能马上就能去买。所以中国队只能靠专业公司赞助或者租借,于是就很难拿到足够数量的装备。
中国女足的大数据采集和使用虽然还处于起步阶段,但已经给她们的比赛和训练带来了很大帮助。负责训练的助理教练常卫巍说:“数据就是我们的眼镜,让我们在训练中看得更清楚了,球员哪里不足我们就重点练哪里,直到数据显示没有问题。这样训练的目的性更强,训练质量也更高。”中国女足主教练郝伟认为,大数据不仅帮助球队改善体能,而且也能帮他确定球员状态和比赛具体战术等。他说:“毫无疑问,大数据对于我们保证球员身体状态和完成训练、比赛任务的帮助很大,起到了关键作用。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23