京公网安备 11010802034615号
经营许可证编号:京B2-20210330
蜕变中的大数据分析平台与应用实务
大数据虽然是一座宝山,但并非有数据,就能产生价值。大同世界科技业务营运中心技术工程处处长张文祥指出,大数据的分析与应用,必须透过很多生态系统搭配组合,才能产生用户所需要的资讯。
事实上,国际顾问研究机构Gartner在2015年所提出的十大策略性技术与趋势,其中「无所不在隐于无形进阶数据分析高居第四名,就可看出大数据分析的重要性。
任何新创技术的成熟度都非一蹴可及,而是要经历科技诞生的促动期、过高期望的尖峰期、泡沬化的谷底期、稳健成长的光明期及实质生产的高峰期,许多新创技术在促动期就可能失败,尖峰期则是发展的临界点,如果能够熬过谷底期,才能步入光明期及高峰期,而数据分析技术,目前正是已经步入谷底期及光明期的临界点。
要掌握大数据分析的发展趋势,首先要先了解大数据的核心,也就是「数据」的本质,如那些数据有助于解决特定的问题;如何、多久及何处取得数据;数据保存的型态及时间;数据要如何萃取;数据要如何藉由视觉化图表或整合式数据予以呈现等。
了解何谓「数据」后,接下来就得了解大数据的叁大特性,思考其应用特性。包括数据量的规模(Volume):通常是以TB、PB等级的数据量为基本单位;数据异动的速度(Velocity):数据的时效性一旦错过,可能就不具任何价值,在金融交易领域尤其明显;多样性(Variety):数据可能有各种型式,包括文字、影音、图像、网页、串流。
大数据的分析应用与传统的关联式数据库结构化数据分析相较,超大量的半结构化/非结构化数据的储存及分析,很容易造成其效能瓶颈。但若能根据数据特性,建构使用合适的数据分析平台及分析工具,将能以最佳的性价比提供最具深度的数据分析,以洞悉资讯发挥其最大的价值。
大数据时代之所以到来,其与物联网及云端运算的推波助澜有相当密切的关系。引述Gartner的数据指出,不包含PC、平板及智慧型手机在内的物联网装置用户数,将于2020年成长至260亿台,物联网产品与服务供应商将创造逾3,000亿美元的边际收益,且绝大部分在服务领域,其各类终端市场的销售业绩,将为全球带来1.9兆美元的经济附加价值。
结合云端运算无远弗界、随取随用的服务特性以及搭配大数据的探勘、分析与整合技术,让业者得以大规模蒐集、传递、储存及分析数据,以延伸更多深入应用,进而迅速扩大物联网的规模及应用。但在此同时,其也间接深化推动云端运算与大数据分析的应用发展,3者共生共荣,缺一不可。
根据国外针对大数据解决方案所形成的生态系统的分析结果观察,单单在数据架构平台 、分析管理工具、跨数据平台/分析工具、数据应用软件、数据来源、开放技术等几大类,就至少超过350家相关业者。
正由于大数据扮演如此重要角色,因此如何针对应用资讯服务并掌握其中核心技术,对于企业而言,将会是改变未来的关键力量。
新一代企业数据中心必须在兼具成本优势,且快速满足对RPO与RTO需求的前提下,能充分因应云端服务伴随而来的大数据成长挑战。考量数据应用于不同情境下,成长量、效能、服务等级及成本效益需求各有不同,其实很难用单一架构来满足所有的数据储存的需求。因此采用混合式数据储存(Hybrid Storage)将会是其中的关键应用。
至于新一代企业储存架构平台该采用何种储存技术,融合式数据储存、云端储存及水平扩充式储存相当值得关注。
它们的共同点是藉由无远弗届的网路力量,打破数据处理与储存的樊篱,采用分散式架构,支援上千个节点及Petabyte等级的数据量,并可搭配开放塬始码软件框架,不但拥有储存与处理大量数据的能力,还可藉由平行分散档案的处理,得到快速的回应,充分满足大量数据分散式储存与分析应用之需求。
其实传统储存系统、融合储存、云端储存及水平扩充储存各有擅长,企业若能善用混合数据储存技术及平台特性,透过软件定义架构 ,消弭不同应用平台间的差异,将可提升快速回应与增加数据中心弹性,大幅缩小部署时间,并可藉由ITaaS及随选服务,将可大幅提升使用弹性,成为企业可靠的数据储存平台。
企业若能针对商业智慧应用,善用前述技术建立新一代数据中心分析平台,就能打通大数据分析的任督二脉,轻松驾驭大数据分析,细致打造高效率企业数据中心数据平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12