
数据分析常见的两大误解_数据分析师培训
简单地聘用数据分析负责人或购买顶级的数据分析软件,并不代表你的公司已经拥有数据分析的能力。因此,首先理解数据分析的基本知识,是非常重要的。
误解1:数据分析不是技术也不是报告
对这一点的误解,是我见到过的最常见的误解之一。
当谈到数据分析时,很多人仍然相信这应该是IT的事情,因为它与技术有关。数据分析的第一步是把数据转化为信息,在这里,技术只是工具,报告只是产出。我们需要技术来进行数据分析,但这并不意味着数据分析就应该由IT的人来驱动。与此类似,财务管理也需要软件来生成财务报告,但是它并没有被划归到IT,因为它涉及到财务审核和规划。此外,很多人仍然不清楚数据分析和报告的概念之间的区别。在我看来,如果报告中没有任何信息被翻译为可以影响商业产出的见解,那么这就不是数据分析,仅仅是报告而已。
误解2:不理解业务的人很难找到见解
见解是很重要的,很多公司抱怨说报告没有见解。首先,我认为不应该期望从报告中得到见解,因为报告仅仅是提供一些数字来告诉您发生了什么;同时,您仍然需要找出为什么以及需要做什么。
找出见解是一个探索和学习的过程。它必须由彻底理解业务的人来发起,问正确的问题,分析相关信息之间的联系,找出能引向可能行动的见解。找出见解的过程不能外包给对您的业务并不太懂的第三方。
技术、报告、见解,如何理解。
数据分析也是一个人和数据之间交互和协作的过程;因此,技术在这里对改善业务工作效率而言扮演者重要的角色。报告仅仅提供静态的信息,但我们需要快速而动态地获取来自多个数据源的相关数据来回答突发的商业问题并找出见解。没有技术,从无数静态报告中获取见解将会占用大量时间,非常困难。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23