京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上药信谊实现精准实时数据分析
企业发展越快、规模越大,管理模式的问题也日益表现突出。尤其,上海信谊目前已建立供应链系统、财务系统和人力资源等基础信息化系统,在系统中维护了运营所需的各种基础数据。但由于这些系统是随着业务发展逐步建设的,彼此之间信息孤岛现象较为严重,难以实现数据信息的共享、数据挖掘分析,及以统一界面展示管控要素。
为了实现集团业务集中管理辅助决策的信息化目标,上药信谊计划从原有的分散与集中管理相结合的模式,发展成集中管理新模式。在用友公司BQ团队的帮助下,上药信谊进一步规划了经营管理信息化平台全面集中的分步实施策略,为企业产品生态圈建设,抢抓发展机遇,突破信息化瓶颈,奠定了坚实的信息化基础。

▲分析首页
为了构建精准实时的数据分析系统,上药信谊和用友商业分析团队在现有ERP、项目管理系统及各类重要非结构化的业务数据应用之上,确立了BI系统的建设范围,共同规划了数据整合层、语义层、分析建模层、应用展现层四个层面的架构。以数据为着眼点,为支撑企业快速发展搭建起坚实后盾。
第一,数据整合层。是BA系统的数据来源,包括财务系统、各业务系统以及外部数据,这些数据通过数据信息管理工具,如ETL抽取到分析数据引擎AE,数据整合的主要作用是将分布在不同物理区域、不同系统中的数据首先通过规范编写的ETL程序或其它方式进行抽取,集中。
第二,语义层。商业分析平台,通过可视化的拖拽功能,将数据库中的指标数据建立分析模型,实现对数据的分析和监控。
第三,分析建模层。通过用友BQ以往的项目经验和研究,利用各种分析方法,建立了满足企业运营的采购、库存、销售、财务等分析模型,全面监控和分析运营情况,分析模型层主要是利用实时数据处理工具将抽取后的数据汇总到数据仓库中,并通过分析引擎将数据仓库中的数据根据业务归口不同进行归纳、汇总,如财务、营销、人力资源等,主要以报表和查询分析的方式将数据仓库中的数据展示出来。
第四,应用展现层。在展现层将不同特点的业务数据利用多种可视化手段展示出来,如智能查询、图形化报表、多维分析,自定义仪表盘等,是管理决策者和管理者观察企业的窗口。完整地展现了领导重点关注的决策支持系统的指标数据。决策支持系统的界面还可由业务人员根据不同的需求实现个性化定制,采用拖拉拽的操作方式,在页面上放置不同的指标内容,即可建立自己关注的指标分析界面。

▲
销售收入分析
考虑到企业高层领导日常业务繁忙,需要随时随地获悉各分支机构的第一手经营信息,用友BQ将其业务分析展现做到移动端,方便领导查阅。
上药信谊目前已实现了重要业务的数据整合与分析。在分析首页可展示全厂经营分析全貌,包含销售收入、利润、费用、应收周转、存货周转等各项总部考察指标完成情况,并可直观的发现数据问题;通过全产品查询,建立了一套根据产品编码便可查询产品价格、成本、预算、投保价格情况;从首页穿透可查看信谊总厂生产的全部产品的区域销售业绩,并能钻取挖掘当前及历史销售数据变化趋势,为企业自检销售目标完成率及合理优化产品结构提供了参考依据;通过存货周转分析,分析企业的存货周转率,以反映企业库存存货的周转速度,判断存货的流动性及存货资金占用量是否合理,促使企业在保证生产经营连续性的同时,提高资金的使用效率,增强企业的短期偿债能力;另外,可进行利润统计分析,费用对比分析、应收周转分析等。
用友BQ商业分析项目的建成使得上海信宜无论在数据管理的规范性,还是数据分析领域的先进性,与同行业竞争对手相比,又一次起到了领头羊、排头兵的作用,其顺利上线不仅标志着企业朝着打造数字化上药的目标又向前迈进了一步,同时还表明企业通过推进信息化建设工作实现集团化整体管理工作从优秀到卓越的提升。
新一代用友BQ商业分析整体解决方案,通过企业级数据平台的搭建,达到统一数据标准、共享信息资源的数据管理目标,为进一步进行数据分析及挖掘奠定良好的数据基础;同时,通过先进的数据可视化技术,根据现有数据进行ETL处理,把不同数据形式进行整合及展现,直观的将企业经营现状及未来发展趋势展现到企业管理者面前,为管理者的明智决策提供可靠的数据支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16