京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析应用最多的9个关键领域
随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大多数企业和社会都会受到大数据分析的影响,但大数据是究竟是如何帮助增加价值呢?
下面让我们来看看9个高价值大数据应用,这些都是大数据分析应用的关键领域:
1. 理解、定位客户,以及为客户提供服务
这是现在最大的最广为人知的大数据应用领域之一。这里的重点是使用大数据来更好地了解客户以及他们的行为和喜好。企业都热衷于收集社交媒体数据、浏览器日志、文本分析和传感器数据,来更全面地了解他们的客户。在大多数情况下,这里的总的目标是创建预测模型。例如美国零售商Target通过利用大数据分析,他们现在可以非常准确地预测他们的客户什么时候想要小孩。另外,通过使用大数据,电信公司现在可以更好地预测客户流失,沃尔玛可以更好地预测哪些产品将会热卖,汽车保险公司能够了解其客户的驾驶水平,而政府则能够了解选民的偏好。
2. 理解和优化业务流程
大数据也越来越多地用于优化业务流程。通过利用从社交媒体数据、网络搜索趋势以及天气预报挖掘出的预测信息,零售商能够优化其库存。其中广泛应用大数据分析的业务流程是供应链或配送路线优化。在这方面,地理定位或无线电频率识别传感器被用来追踪货物或送货车,并通过整合实时交通数据来优化路线。人力资源业务流程也能够通过使用大数据分析来改进。这包括优化人才招聘,以及使用大数据工具衡量公司文化和人员参与度。
3. 大数据改善每个人的生活
大数据不仅适用于企业和政府,也适用于我们每一个人。我们现在可以利用从可穿戴设备(例如智能手表或智能手链)生成的数据,这让我们可以追踪我们的热量消耗、睡眠模式等。我们还可以利用大数据分析来寻找爱情,大多数网上交友网站都使用大数据工具和算法来帮助我们寻找最合适的对象。
4. 提高医疗和研发
大数据分析的计算能力使我们能够在几分钟内解码整个DNA,并让我们可以找到新的治疗方法,同时更好地理解和预测疾病模式。就像所有人能够受益于智能手表和可穿戴设备产生的数据一样,大数据同样可以帮助病人更好地治病。未来的临床实验将不会仅限于小样本,而是将服务于每个人。大数据技术已经被用来监视早产婴儿以及患病婴儿。通过记录和分析每次心跳以及呼吸模式,医生现在可以在任何身体不适症状出现之前预测24小时的情况。这样,医生就可以更早地救助患病婴儿。
5.提高体育成绩
现在很多运动都已经开始采用大数据分析技术。例如用于网球鼻塞的IBM SlamTracker工具,我们使用视频分析来追踪足球或棒球比赛中每个球员的表现,而运动器材中的传感器技术(例如篮球或高尔夫俱乐部)让我们可以获得对比赛的数据以及如何改进。很多精英运动队还追踪比赛环境外运动员的活动-通过使用智能技术来追踪其营养状况以及睡眠,以及社交对话来监控其情感状况。
6. 优化机器和设备性能
大数据分析还可以让机器和设备变得更加智能和自主化。例如,大数据工具被用来运行谷歌的自驾车。丰田的普锐斯配有相机、GPS以及强大的计算机和传感器,来在道路上安全驾驶,而不需要人类的干预。大数据工具还可以用来优化智能电网。我们甚至可以使用大数据工具来优化计算机和数据仓库的性能。
7. 改善安全和执法
大数据被广泛应用于提高安全和执法过程。大家肯定都知道美国国家安全局(NSA)在使用大数据分析来对抗恐怖主义活动,甚至用来监控我们的生活。其他企业则使用大数据技术来检测和阻止网络攻击。警察还可以使用大数据工具来捉住罪犯,甚至预测犯罪活动,信用卡公司使用大数据来检测欺诈性交易。
8. 改进和优化的城市和国家
大数据还被用来改善我们的城市和国家的很多方面。例如,它让城市可以基于实时交通信息、社交媒体和天气数据来优化交通情况。很多城市正在试点大数据分析技术,试图转变为智能城市,将交通基础设施和公共设施程序都加入进来
9. 金融交易
大数据在金融行业的应用主要是在金融交易。高频交易(HFT)是大数据应用比较多的领域。其中,大数据算法被用来作出交易决定。现在,大多数股权交易都是通过大数据算法进行,这些算法越来越多地开始考虑社交媒体网络和新闻网站的信息来在几秒内做出买入和卖出的决定。
上述9个领域是大数据应用最多的领域,当然,随着大数据工具越来越普及,还有很多其他大数据应用领域,以及很多新的应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16