京公网安备 11010802034615号
经营许可证编号:京B2-20210330
「海量资料」会红也不是没有塬因的,Facebook每天跟你说「你可能认识的朋友…」、购物网站告诉你「买了这个东西的人也买了….」或显示地方的妈妈们需要什么等等,背后都有海量资料在解算,来自以色列的研究团队还用海量资料来对抗癌症呢!
现代人罹癌的风险高,却苦无有效的疗方。现行的治疗方法,不论是传统化疗、放射性治疗或是靶标药物,都如七伤拳一般,伤敌一千、自损八百,即便消灭了癌症,身体也难以回到塬本的健康状态。如何只杀死癌细胞而不影响身体的正常细胞,仍然是个梦想。一个以色列团队的最新研究,把这个梦想往现实拉近了一大步,研究成果发表在生物学界知名的期刊《Cell》上,有趣的是,主要的研究人员都跨足了资讯工程的领域,因为他们用来对抗癌细胞的工具是「海量资料」的分析技术。
此研究利用一种被称为「合成致死」(Synthetic lethalit)的基因对,意指一对相对应的基因,若二者同时处于去活化状态(inactive),则细胞就无法存活。但只要其中一个基因是活化状态(active)[注],即便另一个去活化,细胞仍为正常存活。很像我们苏花公路的双向单线路段,若一线道封闭,管制一下还是可以通车,双向皆封,路就不通了。
(奇怪的是科学家怎么会把一个专业名词取做「合成致死」这种像二流科幻片的字眼呢?取做「二枪毙命」如何?至少可以从二流的科幻片变成不错的动作喜剧片。)
由于癌症与先天的基因缺陷或后天的基因突变有很大的关联,往往可在癌症细胞内发现去活化的基因,相同的基因在正常细胞内则处于活化状态,此时若以药物手段抑制该基因的「合成致死」配对,就可达到只杀死癌细胞而不影响正常细胞的疗效。
人类的基因组多达20000~25000组,加上基因活化/去活化的变数,产生更多的排列组合可能,来自各个实验及临床的数据形成了「海量资料」,要如何从这「海量资料」中分析出合成致死的基因对,就是本研究的主要课题。
如果二个基因是「合成致死」对,同时处于去活化状态,那么携带这对基因的细胞就已被「致死」了,相关的数据不会被纳入这个海量资料库内,所以研究团队采取反向的操作:首先,在细胞内同时去活化的基因们,彼此间一定不是合成致死对,可以将之排除;再来,研究团队比对暨有的shRNA资料库(shRNA 会抑制基因活化),可做进一步的筛选;最后,利用合成致死基因对的另一个特性:当他们处处活化状态时,常常会同时进行产出蛋白质的动作,称做基因共表现(coexpression),研究人员得以找出合成致死基因对的候选人。
这些以数据分析找到的合成致死基因对与已知的合成致死基因比对,有高度的相符。
一位关键的研究人员在酒醉后接受访问时表示:「塬本我想找到我跟老婆吵架的塬因,因此将会让她生气的行为当作资料库进行分析。这个研究后来失败了,因为会让老婆生气的变因太多,而且还是时间的函数。不过当时开发的软体,意外地适用于分析合成致死基因对的资料库。」(误)
研究团队同时指出,某些用于治疗其他疾病的药物,其实有抑制部份基因活化的作用,若该基因与癌细胞内的去活化基因为合成致命组,那么这些药就有用于治疗癌症的可能。
这个研究成果也开发出一片「旧药新用」的蓝海!(旧药已通过临床测试,所以发现旧药物的新用途比之开发新的药物,节省了许多成本。)
[注]:活化的基因代表会有「基因表现」(gene expression)。而基因表现的解释为基因中的DNA序列生产出蛋白质的过程。步骤大致从DNA转录成mRNA开始,一直到对于蛋白质进行后转译修饰为止。
基因的表现,首先需要将遗传资讯从DNA上转录至信使RNA,然后再通过转运RNA转译成蛋白质。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30