京公网安备 11010802034615号
经营许可证编号:京B2-20210330
改变企业业务方式的10个大数据趋势
大数据虽然发展缓慢但却坚决地在改变着企业做业务的方式。“在每个行业都有不同的使用案例,”大数据咨询公司Think Big的CEO兼创始人Ron Bodkin说。“大数据释放出一种利用数据工作的能力,这种能力长期受到了压制。现在终于有了大量被压抑的需求被释放了出来。”
下面就是正在塑造大数据和企业未来的十大趋势。
1、机器数据和物联网将占据中心舞台
虽说情绪分析和点击流数据分析仍将是大数据领域中的重要事情,但是及其数据的重要性将会越来越大。从RFID标签和工业仪器,到喷气发动机和消费电器,整个世界正在生产着越来越庞大的数据量。
企业开始使用这些数据来改进产品、提高效率、寻找缺陷,同时增强安全性。
2、各类组合应用利用大数据创造价值
公共的和私人领域数据的新聚合,正在为我们提供一个新的机遇,那就是聚合多个大数据集所获得的新的洞察力要远远超出单一大数据集所获得的洞察力。“大数据的最大价值就在于把多个大数据集集合在一起,”Bodkin说。例如种子与农作物保护提供商Land O’Lakes’WinField就综合利用了多个大数据集,包括天气数据、土壤湿度数据、土壤类型数据、种子数据和其他数据,帮助其种植者收获最高的产量。
3、内置于开源大数据工具中的创新力大爆发
借助一个开源核心。企业正在开发一系列的大数据平台技术、工具和组件。“大数据的开源核心持续成为一个行动的源头,”Bodkin称。“大数据基本上是由开源模式推动的,由此而引发的组织的创新也在推动着企业向前发展。”
有很多厂商在提供各种工具,简化大数据解决方实施的难度,这些厂商包括通用电气,提供帮助制造商治理其数据的工具;包括微软,正与Hadoop发行商Hortonworks密切合作,帮助企业用户通过Excel分析大数据集。
4、采用前瞻性方法确认大数据在哪里发挥作用
很多初期的大数据项目基本都是专案团队项目,意在证明大数据的价值,但这一状况正在发生变化。“我们看到了成功案例的病毒式传播,”Bodkin说。“但我们认为会有一种更好的方法,不必只依赖专案团队的创新。这就是要采用一种更具前瞻性的方法去确认大数据实际可能在哪里发挥作用。我们认为重要的是要有一个经过验证的测试案例,当然,管理者的支持能让你更快地获得结果。”
5、实际生产用大数据项目越来越多
在过去几年中,大数据行业的多数项目都是试验性项目,但是这段时间以来,实际生产项目越来越多,Bodkin说。他说,这些项目大多都是实现数据的可扩展性和成本控制,就像在造一个数据湖,但是初期就已起步的一些创新者们现在开始把注意力转向了利用新的分析功能实现企业转型。“他们在收集数据上花费的时间很少,而在实际分析数据并回答各种问题上的时间则越来越多,”Bodkin说。
6、大企业开始加速采用大数据
大型企业开始采用大数据,是2012年的一大趋势。在Tata咨询服务(TCS)该年所做的一次全球大企业研究报告中,1217家大企业中有53%开始采用大数据创新。而且对自己的创新有很大的信心,约43%的大企业预计大数据的投资回报率会超过25%。
7、大多数企业的大数据支出很少,少数企业支出很大
大多数企业不会在其大数据创新方面投入很多,但有些企业则会重金投入。Tata咨询服务调查发现,采用大数据创新的大企业在投入上为中值,平均为1000万美元。25%的大企业2012年在这方面的投入普遍低于250万美元。
但是在另一头,TCS所调查的大企业中有15%在大数据支出方面,2012年超过了1亿美元;7%的企业支出超过5亿美元。TCS还发现,电信、旅游、高科技和银行业的企业支出最多,而生命科学、零售和能源领域的企业支出最少。
8、大数据投资面向创收和持续收入
根据Tata咨询服务的调查,在企业采用大数据创新时,能够创收并维持收入的业务功能获得了最多的投资,这一点毫不奇怪。实际上,55%的支出投在了四大业务功能上:销售(15.2%)、市场营销(15%)、客户服务(13.3%)和研发/新品开发(11.3%)。不能直接创收的业务功能则获得的投资较少:IT(11.1%)、财务(7.7%)和人力资源(5%)。
9、大数据的最高回报率来自后勤和财务
虽然像销售和市场营销等可创收的功能获得了最大一块投资(两者加起来达到了大数据预算的30.2%),但TCS发现,后勤和财务(仅占大数据投资的14.4%)等功能预期能获得更高的投资回报率。
事实上,TCS在8项可能受益于大数据创新的业务功能中,要求企业对其中的75项活动进行重要性排名,结果受调查的全球大企业中有很多企业把诸多后勤活动与销售活动一起列在了前25位之中。
10、最大的挑战来自企业文化和技术
尽管不少企业仍然在应对大数据的技术挑战,但是也有企业告诉TCS说,在大数据创新上要想成功,最大的障碍是让各BU能够跳出部门藩篱与其他部门共享信息。当然,在处理数据时,容量、速度和类型众多方面的技术挑战排名也很靠前,占据首位的是数据分析。同时,企业还要努力搞清楚哪些数据可用于做出更好的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16